精英家教网 > 高中数学 > 题目详情
20.已知cos($\frac{π}{4}$-θ)=$\frac{{\sqrt{3}}}{3}$,求cos($\frac{3π}{4}$+θ)-sin2(θ-$\frac{π}{4}$)的值.

分析 利用诱导公式以及平方关系式化简求解即可.

解答 解:∵$(\frac{π}{4}-θ)+(\frac{3π}{4}+θ)=π$,
∴$cos(\frac{3π}{4}+θ)=cos[π-(\frac{π}{4}-θ)]=-cos(\frac{π}{4}-θ)$.
∴$cos(\frac{3π}{4}+θ)-si{n^2}(θ-\frac{π}{4})=-cos(\frac{π}{4}-θ)-1+{cos^2}(θ-\frac{π}{4})$=$-\frac{{\sqrt{3}}}{3}-1+{(\frac{{\sqrt{3}}}{3})^2}$=$-\frac{{2+\sqrt{3}}}{3}$.

点评 本题考查三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.等差数列{an},{bn}的前n项和分别为Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{5}}{{b}_{6}}$=$\frac{9}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC 中,内角 A,B,C 的对边分别是 a,b,c,若 c=2a,bsinB-asin A=$\frac{1}{2}$asinC,则sinB=$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=lnx-ax2+ax恰有两个零点,则实数a的取值范围为(  )
A.(-∞,0)B.(0,+∞)C.(0,1)∪(1,+∞)D.(-∞,0)∪{1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=2x3-6x+k,x∈R.
(1)当k=5时,求函数f(x)在点(2,f(2))处的切线方程.
(2)若函数f(x)=2x3-6x+k在R上只有一个零点,求常数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知P1(2,-1),P2(0,5),点P在P1P2的延长线上,且|$\overrightarrow{{P}_{1}P}$|=3|$\overrightarrow{P{P}_{2}}$|,则点P的坐标为(  )
A.(1,2)B.($\frac{4}{3}$,3)C.($\frac{2}{3}$,3)D.(-1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:△ABC中,角A,B,C所对应的边为a,b,c,其中B=60°,c=4.
(Ⅰ)若C=45°,求b;
(Ⅱ)若b=2$\sqrt{7}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线l1:y=2x,直线l2过定点A(3,2)且与x轴上交于点P(a,0)(a>2),则直线l1,l2与x轴正半轴围成的三角形面积的最小值=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x,则(  )
A.函数f(x)无极值点B.x=1为f(x)的极小值点
C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点

查看答案和解析>>

同步练习册答案