精英家教网 > 高中数学 > 题目详情
5.已知P1(2,-1),P2(0,5),点P在P1P2的延长线上,且|$\overrightarrow{{P}_{1}P}$|=3|$\overrightarrow{P{P}_{2}}$|,则点P的坐标为(  )
A.(1,2)B.($\frac{4}{3}$,3)C.($\frac{2}{3}$,3)D.(-1,8)

分析 设出点P的坐标,根据题意得出$\overrightarrow{{P}_{1}P}$=-3$\overrightarrow{{PP}_{2}}$,利用向量相等对应坐标相等列出方程组,即可求出点P的坐标.

解答 解:设点P(x,y),
由P在P1P2的延长线上,且|$\overrightarrow{{P}_{1}P}$|=3|$\overrightarrow{P{P}_{2}}$|,
得:$\overrightarrow{{P}_{1}P}$=-3$\overrightarrow{{PP}_{2}}$,
如图所示,
又$\overrightarrow{{P}_{1}P}$=(x-2,y+1),$\overrightarrow{{PP}_{2}}$=(-x,5-y),
∴$\left\{\begin{array}{l}{x-2=-3•(-x)}\\{y+1=-3(5-y)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=-1}\\{y=8}\end{array}\right.$,
∴点P的坐标为(-1,8).
故选:D.

点评 本题考查了平面向量的坐标表示与向量相等的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若a,b,c∈R,且a>b,则下列不等式一定成立的是(  )
A.a+c>b-cB.ac>bcC.a2>b2D.(a-b)c2≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某产品的价格函数p=10-$\frac{q}{5}$,成本函数为C=50+2q,其中,q为产量,问产量为多少时总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直棱柱ABC-A1B1C1中,平面A1BC⊥平面A1ABB1,且AA1=AB=BC=2.M、N分别为A1B、B1C1中点.
(1)求三棱锥A1-MNC的体积.
(2)求证:AB⊥BC
(3)(文科做)求AC与平面A1BC所成角的大小.
(理科做)求锐二面角A-A1C-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知cos($\frac{π}{4}$-θ)=$\frac{{\sqrt{3}}}{3}$,求cos($\frac{3π}{4}$+θ)-sin2(θ-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$在同一平面内,$\overrightarrow{a}$=(2,1).
(Ⅰ)若|$\overrightarrow{c}$|=2$\sqrt{5}$,$\overrightarrow{a}$∥$\overrightarrow{c}$,求$\overrightarrow{c}$;
(Ⅱ)若($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,求$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.比较$\sqrt{7}$-$\sqrt{5}$与2$\sqrt{2}$-$\sqrt{6}$的大小为>(用“=”,“>”或“<”填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=ax+b(b>0)的图象经过点P(1,2),如图所示,则$\frac{4}{a-1}$+$\frac{1}{b}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将20个相同的球全部放入编号为1,2,3的盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法共有120种.(用数字作答)

查看答案和解析>>

同步练习册答案