精英家教网 > 高中数学 > 题目详情
15.若a,b,c∈R,且a>b,则下列不等式一定成立的是(  )
A.a+c>b-cB.ac>bcC.a2>b2D.(a-b)c2≥0

分析 利用不等式的基本性质,直接写出结果即可.

解答 解:a,b,c∈R,且a>b,可得a-b>0,
c2≥0,
可得(a-b)c2≥0.
故选:D.

点评 本题考查不等式的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知命题p:实数m使函数f(x)=$\frac{1}{3}$x3-(m-1)x2-4mx+1在[1,3]上不单调,命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示椭圆.
(1)若p∧q为真,求m的取值范围;
(2)若p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如下表.
优秀非优秀总计
课改班a50b
非课改班20c110
合计de210
(Ⅰ)求d的值为多少?若采用分层抽样的方法从课改班的学生中随机抽取4人,则数学成绩优秀和数学成绩非优秀抽取的人数分别是多少?
(Ⅱ)在(Ⅰ)的条件下抽取的4人中,再从中随机抽取2人,求两人数学成绩都优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=x+ax2+blnx的图象在点P(1,0)处的切线斜率为2.
(1)求a,b的值;
(2)证明:f(x)≤2x-2对任意正实数x恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.等差数列{an},{bn}的前n项和分别为Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{5}}{{b}_{6}}$=$\frac{9}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在三棱锥A-OBC中,OA,OB,OC两两垂直且长度都为2,则这个三棱锥的体积为$\frac{4}{3}$;O到平面ABC的距离为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下列结论,正确的个数是(  )
(1)在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;
(2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;
(3)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等比数列{an}的前n项和为Sn,Sn=a($\frac{1}{4}$)n-1+6且,则a=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知P1(2,-1),P2(0,5),点P在P1P2的延长线上,且|$\overrightarrow{{P}_{1}P}$|=3|$\overrightarrow{P{P}_{2}}$|,则点P的坐标为(  )
A.(1,2)B.($\frac{4}{3}$,3)C.($\frac{2}{3}$,3)D.(-1,8)

查看答案和解析>>

同步练习册答案