分析 由题意画出图形,当a≠3时,求出直线PA的方程,联立直线PA的方程与y=2x求得B的纵坐标,代入三角形面积公式,转化为二次函数求得最值,当a=3时,直接求得三角形面积,比较后得答案.
解答 解:如图,![]()
∵A(3,2)且与x轴上交于点P(a,0)(a>2),
∴当a≠3时,直线PA的方程为:$\frac{y-0}{2-0}=\frac{x-a}{3-a}$,即2x+(a-3)y-2a=0.
联立$\left\{\begin{array}{l}{y=2x}\\{2x+(a-3)y-2a=0}\end{array}\right.$,解得${y}_{B}=\frac{2a}{a-2}$.
∴${S}_{△OPB}=\frac{1}{2}×a×\frac{2a}{a-2}=\frac{{a}^{2}}{a-2}$=$\frac{1}{-\frac{2}{{a}^{2}}+\frac{1}{a}}$.
∴当$\frac{1}{a}=\frac{1}{4}$,即a=4时,(S△OPB)min=8;
当a=3时,PA所在直线方程为x=3,则yB=6,此时${S}_{△OPB}=\frac{1}{2}×3×6=9$.
综上,直线l1,l2与x轴正半轴围成的三角形面积的最小值为8.
故答案为:8.
点评 本题考查直线的截距式方程,训练了二次函数最值的求法,体现了分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com