精英家教网 > 高中数学 > 题目详情
已知函数+3x+b的图象与x轴有三个不同交点,且交点的横坐标分别可作为抛物线、双曲线、椭圆的离心率,则实数a的取值范围是     .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆M:(x+1)2+y2=8,定点N(1,0),点P为圆M上的动点,若Q在NP上,点G在MP上,且满足
(I)求点G的轨迹C的方程;
(II)直线l过点P(0,2)且与曲线C相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆方程为,射线(x≥0)与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).
(Ⅰ)求证直线AB的斜率为定值;
(Ⅱ)求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在等边中,O为边的中点,DE的高线上的点,且.若以A,B为焦点,O为中心的椭圆过点D,建立适当的直角坐标系,记椭圆为M

(1)求椭圆M的方程;
(2)过点E的直线与椭圆M交于不同的两点P,Q,点P在点E, Q
间,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的上、下顶点分别为是椭圆上两个不同的动点.
(I)求直线交点的轨迹C的方程;
(Ⅱ)若过点F(0,2)的动直线z与曲线C交于A、B两点,问在y轴上是否存在定点E,使得?若存在,求出E点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的一个焦点(c为椭圆的半焦距).
(1)求椭圆的方程;
(2)若为直线上一点,为椭圆的左顶点,连结交椭圆于点,求的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的左,右焦点坐标分别为,离心率是。椭圆C的左,右顶点分别记为A,B。点S是椭圆C上位于轴上方的动点,直线AS,BS与直线分别交于M,N两点。
(1)      求椭圆C的方程;
(2)      求线段MN长度的最小值;
(3)      当线段MN的长度最小时,在椭圆C上的T满足:T到直线AS的距离等于.
试确定点T的个数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜率为1的直线 过椭圆的右焦点,交椭圆于两点,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的焦点在y轴上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},则这样的椭圆的个数是                                                       (   )
A.70B.35C.30D.20

查看答案和解析>>

同步练习册答案