精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+|x-a|,a∈R.
(1)若a=-1,求函数y=f(x)(x∈[0,+∞)的图象在x=1处的切线方程;
(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;
(3)当a>0时,若对于任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.
考点:利用导数研究曲线上某点切线方程,根的存在性及根的个数判断,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)利用导数的几何意义,求出切线的斜率,即可求出图象在x=1处的切线方程;
(2)若g(x)=x4,方程等价于x=a或
x>a
x=1
x<a
x=-1
,分类讨论,即可讨论方程f(x)=g(x)的实数解的个数;
(3)确定函数f(x)在(a,+∞)上是增函数,且f(x)>f(a)=a4>0,对任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,所以[
1024
f(a+2)
1024
f(a)
]⊆[f(a+2),+∞),即可得出结论.
解答: 解:(1)当a=-1,x∈[0,+∞)时,f(x)=-x3+x+1,从而f′(x)=-3x2+1.
当x=1时,f(1)=1,f′(1)=-2,
所以函数y=f(x) (x∈[0,+∞))的图象在x=1处的切线方程为y-1=-2(x-1),
即2x+y-3=0.                  …(3分)
(2)f(x)=g(x)即为ax3+|x-a|=x4
所以x4-ax3=|x-a|,从而x3(x-a)=|x-a|.
此方程等价于x=a或
x>a
x=1
x<a
x=-1
   …(6分)
所以当a≥1时,方程f(x)=g(x)有两个不同的解a,-1;
当-1<a<1时,方程f(x)=g(x)有三个不同的解a,-1,1;
当a≤-1时,方程f(x)=g(x)有两个不同的解a,1.    …(9分)
(3)当a>0,x∈(a,+∞)时,f(x)=ax3+x-a,f′(x)=3ax2+1>0,
所以函数f(x)在(a,+∞)上是增函数,且f(x)>f(a)=a4>0.
所以当x∈[a,a+2]时,f(x)∈[f(a),f(a+2)],
1024
f(x)
∈[
1024
f(a+2)
1024
f(a)
],
当x∈[a+2,+∞)时,f(x)∈[f(a+2),+∞).  …(11分)
因为对任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,
所以[
1024
f(a+2)
1024
f(a)
]⊆[f(a+2),+∞).     …(13分)
从而
1024
f(a+2)
≥f(a+2).
所以f 2(a+2)≤1024,即f(a+2)≤32,也即a(a+2)3+2≤32.
因为a>0,显然a=1满足,而a≥2时,均不满足.
所以满足条件的正整数a的取值的集合为{1}.     …(16分)
点评:本题考查利用导数研究曲线上某点切线方程,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从10张分别标有数字1,2,3,4,5,6,7,8,9,10的卡片中抽取4张卡片,则这4卡片上数字从小到大成等差数列的概率为(  )
A、
2
5
B、
4
5
C、
4
15
D、
2
35

查看答案和解析>>

科目:高中数学 来源: 题型:

a>b>1,P=
lga•lgb
,Q=
1
2
(lga+lgb),R=
a+b
2
,则(  )
A、.R<P<Q
B、.P<Q<R
C、Q<P<R
D、.P<R<Q

查看答案和解析>>

科目:高中数学 来源: 题型:

p:函数f(x)=lg(x2+mx+1)的值域是Rq:x2-2mx+2m+3≤0的解集是∅,若p∧q为假,p∨q为真.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连结GH.
(Ⅰ)求证:AB∥GH;
(Ⅱ)求平面PAB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

小白被“老大”找到了!小伙伴们喜大普奔啊有木有!为了答谢“老大”,小新他们决定帮助“老大”做一件事,就是调查双叶幼稚园小朋友在20:00~21:00时间段在做什么?最后小新等做成了下面的数据表:
看电视看书合计
25530
101020
合计351550
(1)将此样本的频率作为总体的概率估计,随机调查3名男性小朋友,设调查的3名男性小朋友在这一时间段以看电视的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,吉永老师能否有99%的把握认为“在20:00~21:00时间段的休闲方式与性别有关系”?
参考公式:K=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
参考数据:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:

化简计算:
已知全集U=R,A={x|-4≤x≤2},B={x|-1<x≤3},P={x|x≤0或x≥
5
2
}.
(1)求A∩B;
(2)求(∁UB)∪P.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,在△ABC中,D是AB上一点,△ACD的外接圆交BC于E,AB=2BE.
(Ⅰ)求证:BC=2BD;
(Ⅱ)若CD平分∠ACB,且AC=2,EC=1,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
8
=1的左、右焦点分别为F1,F2,P为椭圆上一点,当|PF1|=λ|PF2|时λ的取值范围(  )
A、[1,3]
B、[1,2]
C、[
1
3
,3]
D、[
1
2
,2]

查看答案和解析>>

同步练习册答案