精英家教网 > 高中数学 > 题目详情
20.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是(  )
A.24B.96C.144D.210

分析 求出5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号的组数,然后分给4人排列即可.

解答 解:5张参观券全部分给4人,分给同一人的2张参观券连号,
方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4×A44=96种.
故选:B.

点评 本题考查排列组合以及简单的计数原理的应用,正确分组是解题的关键,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.计算x+y+z=6的正整数解有多少组?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.{an}的前n项和为Sn,且{$\frac{{S}_{n}}{n}$}为等差数列,S19=171,则a10为(  )
A.9B.10C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果sin(π+α)=-$\frac{\sqrt{3}}{2}$,那么cos($\frac{π}{2}$+α)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的内角A,B,C的对边分别为a,b,c,且b=acosc+$\frac{{\sqrt{3}}}{3}$csinA.
(Ⅰ)求角A的大小;
(Ⅱ)当a=3时,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递减区间是(  )
A.[3k-1,3k+2](k∈Z)B.[3k-4,3k-1](k∈Z)C.[6k-1,6k+2](k∈Z)D.[6k-4,6k-1](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气的“元凶”,PM2.5日均值越小,空气质量越好.国家环境标准设定的PM2.5日均值(微克/立方米)与空气质量等级对应关系如表:
PM2.5日均值
(微克/立方米)
0--3535--7575--115115--150150--250250以上
空气质量等级1级优2级良3级
轻度污染
4级
中度污染
5级
重度污染
6级
严重污染
由某市城市环境监测网获得4月份某5天甲、乙两城市的空气质量指数数据,用茎叶图表示,如图所示.
(Ⅰ)试根据统计数据,分别写出两城区的PM2.5日均值的中位数,并从中位数角度判断哪个城区的空气质量较好?
(Ⅱ)考虑用频率估计概率的方法,试根据统计数据,估计甲城区某一天空气质量等级为3级轻度污染的概率;
(Ⅲ)分别从甲、乙两个城区的统计数据中任取一个,试求这两城区空气质量等级相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.任何进制数均可转换为十进制数,如八进制(507413)8转换成十进制数,是这样转换的:(507413)8=5×85+0×84+7×83+4×82+1×8+3=167691,十六进制数(23456)16是这样转换的:(23456)16=2×164+3×163+4×162+5×16+6=144470.那么将二进制数(1101)2转换成十进制数,这个十进制数是(  )
A.15B.14C.13D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.终边落在第二象限的角组成的集合为(  )
A.{α|kπ<α<$\frac{π}{2}$+kπ,k∈Z}B.{α|$\frac{π}{2}$+kπ<α<π+kπ,k∈Z}
C.{α|2kπ<α<$\frac{π}{2}$+2kπ,k∈Z}D.{α|$\frac{π}{2}$+2kπ<α<π+2kπ,k∈Z}

查看答案和解析>>

同步练习册答案