精英家教网 > 高中数学 > 题目详情
2.为了判断高中二年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:
理科文科合计
189
815
合计
(1)请完善上表中所缺的有关数据;
(2)试通过计算说明在犯错误的概率不超过多少的前提下,认为选修文科与性别有关系?
附:
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)对表格数据做出合计即可;
(2)根据公式计算k2,查表即可得出结论.

解答 解:(1)

理科文科合计
18927
81523
合计262450
(2)将表中的数据代入公式K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$
得到K2的观测值k=$\frac{50×(18×15-8×9)2}{26×24×27×23}$≈5.059>5.024.
查表知P(K2≥5.024)=0.025,即说明在犯错误的概率不超过0.025的前提下,选修文科与性别有关系.

点评 本题考查了独立性检验的计算与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.不等式(x+1)(2-x)≤0的解集为(  )
A.{x|-1≤x≤2}B.{x|-1<x<2}C.{x|x≥2或x≤-1}D.{x|x>2或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={0,1,2,3},N={x|x2-x-2≤0},P=M∩N,则集合P的子集共有(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A=${∫}_{0}^{3}$|x2-1|dx,则A=$\frac{22}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设点M的柱坐标为($\sqrt{2}$,$\frac{5π}{4}$,$\sqrt{2}$),则其直角坐标是$(-1,-1,\sqrt{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=2x+1的导数为f′(x),则f′(0)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设复数z=(m2-2m-15)+(m2+4m+3)i,试求实数m的值,使:
(1)z是实数;      
(2)z是纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.质点P从如图放置的正方形ABCD的顶点A出发,根据掷骰子的情况,按照以下的规则在顶点间来回移动:如果朝上数字大于等于5,向平行于AB边的方向移动;如果朝上数字小于等于4,向平行于AD边的方向移动.记掷骰子2n(n∈N*)次后质点P回到A点的概率为an,回到C点的概率为cn
(I)求a1的值;
(II)当n=2时,设X表示质点P到达C点的次数,X的分布列和期望;
(III)当m=2015时,试比较a2015c2015,$\frac{1}{2}$的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex,g(x)=lnx+1,
(1)求函数h(x)=f(x-1)-g(x)在区间[1,+∞)上的最小值;
(2)已知1≤y<x,求证:ex-y-1>lnx-lny;
(3)设H(x)=(x-1)2f(x),在区间(1,+∞)内是否存在区间[a,b](a>1),使函数H(x)在区间[a,b]的值域也是[a,b]?请给出结论,并说明理由.

查看答案和解析>>

同步练习册答案