精英家教网 > 高中数学 > 题目详情
(12分)如图,四边形ABCD为矩形,BC⊥平面ABEFCE上的点,
BF⊥平面ACE.
(1)求证:AEBE
(2)设点M为线段AB的中点,点N为线段CE的中点.
求证:MN∥平面DAE
同解析
证明:(1)∵,∴
,∴,…………………………(3分)
,∴,又
.…………………………(6分)
(2)取的中点,连接
∵点为线段的中点.
,且, ……………………(8分)
又四边形是矩形,点为线段的中点,∴,且
,且,故四边形是平行四边形,
…………(10分)    
平面平面,∴∥平面. …………………(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,四棱锥的底面ABCD是正方形,底面ABCD,E,F分别是AC,PB的中点.
(I)证明:平面PCD;
(Ⅱ) 若求EF与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的空间几何体中,平面平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上。
(1)求证:DE//平面ABC;
(2)求二面角E—BC—A的余弦;
(3)求多面体ABCDE的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知E,F分别是正方体ABCD-A1B1C1D1的棱BC和CD的中点,求:
(1)A1D与EF所成角的大小;
(2)A1F与平面B1EB所成角;
(3)二面角C-D1B1-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
在立体图形P-ABCD中,底面ABCD是一个直角梯形,∠BAD=90°,AD∥BC,
AB=BC=a,AD=PA=2a,E是边的中点,且PA⊥底面ABCD。
(1)求证:BE⊥PD
(2)求证:
(3)求异面直线AE与CD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在三棱柱中,已知侧面
(1)求直线C1B与底面ABC所成角的正弦值;
(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).
(3)在(2)的条件下,若,求二面角的大小.
      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 (本题满分12分) 如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形
(1)求证:
(2)设线段的中点为,在直线 上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(3)求二面角正切值的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
右图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到
的几何体,截面为ABC.已知A1B1B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3.
(1)设点OAB的中点,证明:OC∥平面A1B1C1
(2)求二面角BACA1的大小;
(3)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不重合的平面,则下列命题中正确的是  
A.若B.若
C.若D.若

查看答案和解析>>

同步练习册答案