精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
在如图所示的空间几何体中,平面平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上。
(1)求证:DE//平面ABC;
(2)求二面角E—BC—A的余弦;
(3)求多面体ABCDE的体积。
(1)略
(2)二面角E—BC—A的余弦值为
(3)多面体DE—ABC的体积为V=V1-V2=
解:方法一:(1)由题意知, 都是边长为2的等边三角形,取AC中点O,连接BO,DO,则

平面ACD平面ABC
平面ABC,作EF平面ABC,
那么EF//DO,根据题意,点F落在BO上,
,易求得
所以四边形DEFO是平行四边形,DE//OF;
平面ABC,平面ABC,
平面ABC…………4分
(2)作FGBC,垂足为G,连接FG;
平面ABC,根据三垂线定理可知,EGBC
就是二面角E—BC—A的平面角



即二面角E—BC—A的余弦值为…………8分
(3)平面ACD平面ABC,OBAC
平面ACD;又
平面DAC,三棱锥E—DAC的体积

又三棱锥E—ABC的体积
多面体DE—ABC的体积为V=V1-V2=…………12分
方法二:(1)同方法一
(2)建立如图所示的空间直角坐标系,可求得平面ABC的一个法向量为
平面BCE的一个法向量为,所以
又由图知,所求二面角的平面角是锐角,所以二面角E—BC—A的余弦值为

(3)同方法一
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)如图,四边形ABCD为矩形,BC⊥平面ABEFCE上的点,
BF⊥平面ACE.
(1)求证:AEBE
(2)设点M为线段AB的中点,点N为线段CE的中点.
求证:MN∥平面DAE

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分l4分)如图,边长为的正方体中,的中点,在线段上,且
(1)求异面直线所成角的余弦值;
(2)证明:
(3)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=.
(Ⅰ)求证:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,正三棱柱所有棱长都是是棱的中点,是棱的中点,于点
(1)求证:
(2)求二面角的大小(用反三角函数表示);
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCDEPC的中点.
(1)证明 平面
(2)求EB与底面ABCD所成的角的正切值.


 
 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两个确定的相交平面,a、b为一对异面直线,下列条件中能使a、b所成的角为定值的有 (   )
(1)a∥,b       (2)a⊥,b∥  (3)a⊥,b⊥ (4)a∥,b∥,且a与的距离等于b与的距离
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若长方体公共顶点的三个面的面积分别为,则对角线长为(    )
A.B.C.6D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱锥P—ABC中,D、E分别为PA、AC的中点,则△BDE不可能是 (   )
A.等腰三角形     B.等边三角形     C.直角三角形     D.钝角三角形

查看答案和解析>>

同步练习册答案