精英家教网 > 高中数学 > 题目详情
 (本题满分12分) 如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形
(1)求证:
(2)设线段的中点为,在直线 上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(3)求二面角正切值的大小。
(1)略
(2)略
(3)二面角正切值为
解:(Ⅰ)因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF. ……………………………………2分
因为⊿ABE为等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因为∠AEF=45,
所以∠FEB=90°,即EF⊥BE. …………………3分
因为BC平面ABCD, BE平面BCE,
BC∩BE=B
所以  …………………………4分(II)取BE的中点N,连结CN,MN,则MNPC
∴PMNC为平行四边形,所以PM∥CN.            ………6分   
∵CN在平面BCE内,PM不在平面BCE内,PM∥平面BCE ………8分         
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD,
作GH⊥BD于H,连结FH,则由三垂线定理知BD⊥FH.
∴ ∠FHG为二面角F-BD-A的平面角. …………………10分
∵  FA=FE,∠AEF=45°,∠AEF=90°, ∠FAG=45°.
设AB=1,则AE=1,AF=,则
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,
,                                         
在Rt⊿FGH中, ,
∴ 二面角正切值为   ………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)如图,四边形ABCD为矩形,BC⊥平面ABEFCE上的点,
BF⊥平面ACE.
(1)求证:AEBE
(2)设点M为线段AB的中点,点N为线段CE的中点.
求证:MN∥平面DAE

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=.
(Ⅰ)求证:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是平行四边形,,且,又底面,又为边上异于的点,且.
(1)求四棱锥的体积;
(2)求到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题8分)如图,在四棱锥中,为正三角形,, 中点
(1)求证:;(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不重合的平面,下列命题为真命题的是(   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两个确定的相交平面,a、b为一对异面直线,下列条件中能使a、b所成的角为定值的有 (   )
(1)a∥,b       (2)a⊥,b∥  (3)a⊥,b⊥ (4)a∥,b∥,且a与的距离等于b与的距离
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,则下列四个命题中真命题是                         (   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为,则圆台较小底面的半径为(     )
 7          .  6        .  5          3

查看答案和解析>>

同步练习册答案