精英家教网 > 高中数学 > 题目详情
已知mn>0,且m+n=1,则
1
m
+
1
n
的最小值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:利用“乘1法”和基本不等式的性质即可得出.
解答: 解:∵mn>0,且m+n=1,
∴m,n>0.
1
m
+
1
n
=(m+n)(
1
m
+
1
n
)=2+
n
m
+
m
n
≥2+2
n
m
m
n
=4,当且仅当m=n=
1
2
时取等号.
1
m
+
1
n
的最小值为4.
故答案为:4.
点评:本题考查了“乘1法”和基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和Sn,已知a1=1,2Sn=nan+1-
1
3
n3-n2-
2
3
n,n∈N*
(1)求a2的值;
(2)证明:数列{
an
n
}是等差数列,并求出数列{an}的通项公式;
(3)证明:对一切正整数n,有
1
a1
+
1
a2
+
1
a3
+…+
1
an
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,2an+1=2an+1,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别为a、b、c,给出下列命题:
①若a>b>c,则cosA>cosB>cosC;
②若A>B>C,则sinA>sinB>sinC;
③若a=40,b=20,B=25°,则△ABC有两解;
④必存在A、B、C,使tanAtanBtanC<tanA+tanB+tanC成立.
其中,正确命题的编号为
 
.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

编号为1、2、3、4、5、6、7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},新数列a1,a2-a1,a3-a2,…,an-an-1,…为首项为1,公比为
1
3
的等比数列,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+x+1(a∈R)在区间(-
2
3
,-
1
3
)内是减函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-10x+9=0的两个根,则d=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z满足|z-i|+|z+i|=4,则|z-i|取值范围为
 

查看答案和解析>>

同步练习册答案