精英家教网 > 高中数学 > 题目详情
14.如图所示的程序框图,若输入n=2016,则输出的s值为0.

分析 模拟执行程序框图可得程序框图的功能是求s=sin$\frac{2015π}{3}$+sin$\frac{2014π}{3}$+…+sin$\frac{π}{3}$的值,观察规律可得sin$\frac{tπ}{3}$的取值以6为周期,且sin$\frac{kπ}{3}$+sin$\frac{(k+1)π}{3}$+…sin$\frac{(k+6)π}{3}$=0,从而可得s=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+sin$\frac{4π}{3}$+sin$\frac{5π}{3}$=0.

解答 解:模拟执行程序框图,可得程序框图的功能是求s=sin$\frac{2015π}{3}$+sin$\frac{2014π}{3}$+…+sin$\frac{π}{3}$的值,
因为:sin$\frac{tπ}{3}$取值以6为周期,且sin$\frac{kπ}{3}$+sin$\frac{(k+1)π}{3}$+…sin$\frac{(k+6)π}{3}$=0,
又因为:2015=335*6+5,
所以:s=sin$\frac{2015π}{3}$+sin$\frac{2014π}{3}$+…+sin$\frac{π}{3}$=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+sin$\frac{4π}{3}$+sin$\frac{5π}{3}$=0.
故答案为:0.

点评 本题主要考察了循环结构的程序框图,考查了正弦函数的周期性,模拟执行程序框图正确得到程序框图的功能是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知圆C:(x-2)2+y2=4,线段EF在直线l:y=x+1上运动,点P为线段EF上任意一点,若圆C上存在两点A、B,使得∠APB≥120°,则线段EF长度的最大值是$\frac{\sqrt{30}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}满足a1=1,公差d=3,若an=298,则n=(  )
A.99B.100C.101D.102

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某家电商场开展购物抽奖促销活动,顾客购物满500元即可获得一次抽奖机会,若每10张券中有一等奖券1张,可获价值100元的奖品;有二等奖券3张,每张可获价值50元的奖品;其余6张没有奖,某顾客从这10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知复数z=(a2-7a+6)+(a2-5a-6)i(a∈R)
(1)若复数z为纯虚数,求实数a的值;
(2)若复数z在复平面内的对应点在第四象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,且an=2+(-$\frac{1}{3}$)n-1,若对任意的n∈N*,都有1≤p(Sn-2n)≤3,则实数p的取值范围是$[\frac{3}{2},3]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,a=2,b=$\sqrt{3}$,c=1,则最小角为30 度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,则x+2y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,若对任意正整数n,都有an=$\frac{3}{4}{S_n}$+2.
(1)设bn=log2an,求证:数列{bn}为等差数列;
(2)在(1)的条件下,设cn=(-1)n+1$\frac{n+1}{{{b_n}{b_{n+1}}}}$,数列{cn}的前n项和为Tn,求证:$\frac{1}{21}$≤Tn≤$\frac{2}{15}$.

查看答案和解析>>

同步练习册答案