精英家教网 > 高中数学 > 题目详情
19.定义域为D的函数f(x)同时满足条件:①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[at,bt](t∈N+),那么我们把f(x)叫做[a,b]上的“t级矩形”函数,函数f(x)=x3是[a,b]上的“2级矩形”函数,则满足条件的常数对(a,b)共有(  )
A.1对B.2对C.3对D.4对

分析 函数f(x)=x3是[a,b]上的“2级矩阵”函数,即满足条件①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[at,bt],利用函数f(x)=x3是[a,b]上的单调增函数,即可求得满足条件的常数对.

解答 解:由题意,函数f(x)=x3是[a,b]上的“2级矩阵”函数,
即满足条件①常数a,b满足a<b,区间[a,b]⊆D,
②使f(x)在[a,b]上的值域为[at,bt],
∵函数f(x)=x3是[a,b]上的单调增函数,
∴$\left\{\begin{array}{l}{{a}^{3}=2a}\\{{b}^{3}=2b}\end{array}\right.$,∴满足条件的常数对(a,b)为(-$\sqrt{2}$,0),(-$\sqrt{2}$,$\sqrt{2}$),(0,$\sqrt{2}$),
故选:C.

点评 本题考查了新定义型函数的理解和运用能力,函数单调性的应用,转化化归的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知抛物线x2=4y焦点为F,直线l与该抛物线相交于点A,B,且$\overrightarrow{OF}$=$\frac{1}{3}$$\overrightarrow{OA}$$+\frac{2}{3}$$\overrightarrow{OB}$,则|$\overrightarrow{AB}$|=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个结论:
①若p∧q是真命题,则¬p可能是真命题;
②命题“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“a>5且b>-5”是“a+b>0”的充要条件;
④当a<0时,幂函数y=xa在区间(0,+∞)上单调递减.
其中正确结论的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.
(1)求三棱锥A-FGC的体积.
(2)求证:面GEF⊥面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC中,a,b,c分别是角A,B,C的对边,已知3(sin2B+sin2C)=3sin2A+2sinBsinC.
(1)若sinB=$\sqrt{2}$cosC,求tanC的值;
(2)若a=2,△ABC的面积S=$\frac{\sqrt{2}}{2}$,且b>c,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数y=f(x)的导函数为y=f′(x),且f′(x)=sin2x-$\sqrt{3}$cos2x,则下列说法正确的是(  )
A.y=f(x)的周期为$\frac{π}{2}$B.y=f(x)在[0,$\frac{π}{6}$]上是减函数
C.y=f(x)的图象关于直线x=$\frac{π}{2}$对称D.y=f(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,且$\frac{π}{4}$$<α<\frac{3π}{4}$,则cosα=-$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知x,y满足不等式$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y≤25\\ x≥1\end{array}\right.$,则函数z=2x+y取得最大值等于12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程42x-1=64的解为x=2.

查看答案和解析>>

同步练习册答案