精英家教网 > 高中数学 > 题目详情
7.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.
(1)求三棱锥A-FGC的体积.
(2)求证:面GEF⊥面AEF.

分析 (1)由平面BDEF⊥平面ABCD得FB⊥平面ABCD,故FB⊥AB,又AB⊥BC,于是AB⊥平面FBCG,即AB为棱锥A-FCG的高;
(2)建立空间坐标系,分别求出平面AEF和平面EFG的法向量,证明他们的法向量垂直即可.

解答 解:(1)∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,FB⊥BD,FB?平面BDEF,
∴FB⊥平面ABCD,∵AB?平面ABCD,
∴AB⊥FB,又AB⊥BC
∴AB⊥平面BCGF,
∴VA-FGC=$\frac{1}{3}{S}_{△FGC}•AB$=$\frac{1}{3}×\frac{1}{2}×1×2×2$=$\frac{2}{3}$.
(2)以B为原点,AB,BC,BF为坐标轴建立空间直角坐标系,如图:
则A(-2,0,0),E(-2,2,2),F(0,0,2),G(0,2,1),
∴$\overrightarrow{AE}$=(0,2,2),$\overrightarrow{EF}$=(2,-2,0),$\overrightarrow{FG}$=(0,2,-1).
设平面AEF的法向量为$\overrightarrow{{n}_{1}}$=(x,y,z),平面EFG的法向量为$\overrightarrow{{n}_{2}}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{AE}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{EF}=0}\end{array}\right.$,$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{EF}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{FG}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{2y+2z=0}\\{2x-2y=0}\end{array}\right.$,$\left\{\begin{array}{l}{2a-2b=0}\\{2b-c=0}\end{array}\right.$,
令z=1得$\overrightarrow{{n}_{1}}$=(-1,-1,1),令c=1得$\overrightarrow{{n}_{2}}$=($\frac{1}{2}$,$\frac{1}{2}$,1).
∴$\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}$=-$\frac{1}{2}-\frac{1}{2}+1$=0.
∴$\overrightarrow{{n}_{1}}⊥\overrightarrow{{n}_{2}}$,
∴平面AEF⊥平面EFG.

点评 本题考查了线面垂直的判定,面面垂直的性质与判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知数列{an}满足a1+a2+…+an=n2+3n(n∈N+),则$\frac{{a}_{1}^{2}}{2}+\frac{{a}_{2}^{2}}{3}+…+\frac{{a}_{n}^{2}}{n+1}$=2n2+6n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个说法:
①若向量{$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$}是空间的一个基底,则{$\overrightarrow{a}$+$\overrightarrow{b}$、$\overrightarrow{a}$-$\overrightarrow{b}$、$\overrightarrow{c}$}也是空间的一个基底.
②空间的任意两个向量都是共面向量.
③若两条不同直线l,m的方向向量分别是$\overrightarrow{a}$、$\overrightarrow{b}$,则l∥m?$\overrightarrow{a}$∥$\overrightarrow{b}$.
④若两个不同平面α,β的法向量分别是$\overrightarrow{u}$、$\overrightarrow{v}$,且$\overrightarrow{u}$=(1,2,-2)、$\overrightarrow{v}$=(-2,-4,4),则α∥β.
其中正确的说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知sinα=-$\frac{2}{3}$,且α∈(-$\frac{π}{2}$,0),则tan(2π-α)的值为(  )
A.-$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.±$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(cosα,sinβ),$\overrightarrow{b}$=(sinα,cosβ),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则α,β的值可以是(  )
A.α=$\frac{π}{3}$,β=-$\frac{π}{3}$B.α=$\frac{π}{3}$,β=$\frac{2π}{3}$C.α=$\frac{π}{5}$,β=-$\frac{7π}{10}$D.α=$\frac{π}{3}$,β=-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,若|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义域为D的函数f(x)同时满足条件:①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[at,bt](t∈N+),那么我们把f(x)叫做[a,b]上的“t级矩形”函数,函数f(x)=x3是[a,b]上的“2级矩形”函数,则满足条件的常数对(a,b)共有(  )
A.1对B.2对C.3对D.4对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线a∥平面α,直线b在平面α内,则直线a与b的位置关系为(  )
A.一定平行B.一定异面
C.一定相交D.可能平行、可能异面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,试证明AF⊥平面PCD;
(Ⅲ)在(Ⅱ)的条件下,线段PB上是否存在点M,使得EM⊥平面PCD?(请说明理由).

查看答案和解析>>

同步练习册答案