分析 (I)根据五点法,求出函数的五点对应的坐标,即可得到结论.
(II)由于g(x)=f(-x)=2sin(-2x+$\frac{π}{6}$),令$\frac{π}{2}$+2kπ≤-2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z,即可解得g(x)的单调增区间.
解答 解:(I)列表如下:
| x | -$\frac{π}{12}$ | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ |
| 2x+$\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| y | 0 | 2 | 0 | -2 | 0 |
点评 本题主要考查三角函数图象的做法,考查了正弦函数的图象和性质,利用五点法是解决本题的关键.比较基础.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{4}$)∪($\frac{3}{4}$π,π) | B. | ($\frac{π}{4}$,$\frac{3}{4}$π) | C. | [0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π] | D. | [0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}={(-1)^n}•\frac{n-2}{n+1}$ | B. | ${a_n}={(-1)^{n+1}}•\frac{n-1}{n+2}$ | ||
| C. | ${a_n}={(-1)^{n-1}}•\frac{n-1}{n+1}$ | D. | ${a_n}={(-1)^{n-1}}•\frac{n-2}{n+2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2-$\sqrt{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “至少1名男生”与“全是女生” | |
| B. | “至少1名男生”与“至少有1名是女生” | |
| C. | “至少1名男生”与“全是男生” | |
| D. | “恰好有1名男生”与“恰好2名女生” |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com