8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªÖ±ÏßLµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$\frac{¦Ð}{6}$-¦È£©=m£¨mΪ³£Êý£©£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+2sin¦Á}\\{y=\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©
£¨1£©ÇóÖ±ÏßLµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²CµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÔ²C¹ØÓÚÖ±ÏßL¶Ô³Æ£¬ÇóʵÊýmµÄÖµ£®

·ÖÎö £¨1£©Ö±ÏßLµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$\frac{¦Ð}{6}$-¦È£©=m£¨mΪ³£Êý£©£¬Õ¹¿ª¿ÉµÃ£º¦Ñ£¨$\frac{1}{2}$cos¦È-$\frac{\sqrt{3}}{2}$sin¦È£©=m£¬ÀûÓû¥»¯¹«Ê½´úÈë¿ÉµÃÆÕͨ·½³Ì£®Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+2sin¦Á}\\{y=\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£®
£¨2£©ÓÉÔ²C¹ØÓÚÖ±ÏßL¶Ô³Æ£¬¿ÉµÃÔ²ÐÄ£¨-1£¬$\sqrt{3}$£©ÔÚÖ±ÏßLÉÏ£¬´úÈë¼´¿ÉµÃ³öm£®

½â´ð ½â£º£¨1£©Ö±ÏßLµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$\frac{¦Ð}{6}$-¦È£©=m£¨mΪ³£Êý£©£¬Õ¹¿ª¿ÉµÃ£º¦Ñ£¨$\frac{1}{2}$cos¦È-$\frac{\sqrt{3}}{2}$sin¦È£©=m£¬¿ÉµÃÆÕͨ·½³Ì£ºx-$\sqrt{3}$y-2m=0£®
Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+2sin¦Á}\\{y=\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£º£¨x+1£©2+$£¨y-\sqrt{3}£©^{2}$=4£®
£¨2£©¡ßÔ²C¹ØÓÚÖ±ÏßL¶Ô³Æ£¬¡àÔ²ÐÄ£¨-1£¬$\sqrt{3}$£©ÔÚÖ±ÏßLÉÏ£¬
¡à-1-$\sqrt{3}$¡Á$\sqrt{3}$-2m=0£¬½âµÃm=-2£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ô²µÄ¶Ô³ÆÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁпÉÒÔ×÷ΪֱÏß2x-y+1=0µÄ²ÎÊý·½³ÌµÄÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.£¨tΪ²ÎÊý£©$B£®$\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.£¨tΪ²ÎÊý£©$
C£®$\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.£¨tΪ²ÎÊý£©$D£®$\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.£¨tΪ²ÎÊý£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨2x+$\frac{¦Ð}{6}$£©£¨x¡ÊR£©£®
£¨ I£©Óá°Îåµã·¨¡±»­³öº¯Êýf£¨x£©ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏó£»
£¨ II£©Áîg£¨x£©=f£¨-x£©Çóº¯Êýg£¨x£©µÄµ¥µ÷ÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬ÒÑÖªÒ»¸ö°ËÃæÌå¸÷Àⳤ¾ùΪ1£¬ËıßÐÎABCDΪÕý·½ÐΣ¬ÔòÏÂÁÐÃüÌâÖв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®²»Æ½ÐеÄÁ½ÌõÀâËùÔÚÖ±ÏßËù³ÉµÄ½ÇΪ60¡ã»ò90¡ã
B£®ËıßÐÎAECFΪÕý·½ÐÎ
C£®µãAµ½Æ½ÃæBCEµÄ¾àÀëΪ$\frac{{\sqrt{6}}}{4}$
D£®¸Ã°ËÃæÌåµÄ¶¥µãÔÚͬһ¸öÇòÃæÉÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¡÷ABCÖܳ¤Îª6£¬a£¬b£¬c·Ö±ðΪ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬Ôò$\overrightarrow{BA}$•$\overrightarrow{BC}$µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[2£¬18£©B£®£¨$\frac{3£¨\sqrt{5}-1£©}{2}$£¬2]C£®[2£¬$\frac{27-9\sqrt{5}}{2}$£©D£®£¨2£¬9-3$\sqrt{5}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Çó·ûºÏÏÂÁÐÌõ¼þµÄÖ±Ïß·½³Ì£º
£¨1£©¹ýµãP£¨3£¬-2£©£¬ÇÒÓëÖ±Ïß4x+y-2=0ƽÐУ»
£¨2£©¹ýµãP£¨3£¬-2£©£¬ÇÒÓëÖ±Ïß4x+y-2=0´¹Ö±£»
£¨3£©¹ýµãP£¨3£¬-2£©£¬ÇÒÔÚÁ½×ø±êÖáÉϵĽؾàÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ôڱ߳¤Îª1µÄÕý·½ÐÎABCDÖУ¬$|{\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}}|$µÈÓÚ£¨¡¡¡¡£©
A£®0B£®1C£®$\sqrt{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È-2sin¦È£¬Ô²ÐÄΪCµãA£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬ÔòÏß¶ÎACµÄ³¤Îª£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®5C£®$\frac{\sqrt{5}}{5}$D£®$\frac{1}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Çóº¯Êýy=cos2x+asinx+$\frac{5}{8}$a+1£¨0¡Üx¡Ü$\frac{¦Ð}{2}$£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸