精英家教网 > 高中数学 > 题目详情
13.求符合下列条件的直线方程:
(1)过点P(3,-2),且与直线4x+y-2=0平行;
(2)过点P(3,-2),且与直线4x+y-2=0垂直;
(3)过点P(3,-2),且在两坐标轴上的截距相等.

分析 利用待定系数法求解.

解答 解:(1)设直线方程为4x+y+c=0,
把P(3,-2)代入上式得:12-2+c=0,解得c=-10,
∴直线方程为:4x+y-10=0.
(2)设直线方程为x-4y+c=0,
把P(3,-2)代入上式得:3+8+c=0,解得c=-11,
∴直线方程为:x-4y-11=0.
(3)若截距为0,则直线方程为y=kx,
把P(3,-2)代入上式得:-2=3k,解得k=-$\frac{2}{3}$.
故直线方程为y=-$\frac{2}{3}$x,即2x+3y=0,
若截距不为0,设截距为a,则方程为$\frac{x}{a}+\frac{y}{b}=1$,
把P(3,-2)代入上式得:$\frac{3}{a}+\frac{-2}{a}=1$,解得a=1,
故直线方程为x+y-1=0.
综上,直线方程为:2x+3y=0或x+y-1=0.

点评 本题考查了直线方程的求解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.有3个旅游团分别从奇台县江布拉克、古城公园、靖宁公园、恐龙沟、魔鬼城5个风景点中选择一处游览,不同的选法有(  )
A.15B.243C.125D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列0,$-\frac{1}{3}$,$\frac{1}{2}$,$-\frac{3}{5}$,$\frac{2}{3}$,…的通项公式为(  )
A.${a_n}={(-1)^n}•\frac{n-2}{n+1}$B.${a_n}={(-1)^{n+1}}•\frac{n-1}{n+2}$
C.${a_n}={(-1)^{n-1}}•\frac{n-1}{n+1}$D.${a_n}={(-1)^{n-1}}•\frac{n-2}{n+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(3,1),$\overrightarrow{c}$=(k,4),且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=(  )
A.(2,12)B.(-2,12)C.14D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线L的极坐标方程为ρsin($\frac{π}{6}$-θ)=m(m为常数),圆C的参数方程为$\left\{\begin{array}{l}{x=-1+2sinα}\\{y=\sqrt{3}+2sinα}\end{array}\right.$(α为参数)
(1)求直线L的直角坐标方程和圆C的普通方程;
(2)若圆C关于直线L对称,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.m为何实数时,复数Z=m2-1+(m+1)i.
(1)是实数   (2)是虚数    (3)是纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(-1,2),则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.0B.4C.-3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=alnx+$\frac{1-a}{2}$x2-bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0
( I)求b;
(II)若存在x0≥1,使得f(x0)<$\frac{a}{1-a}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z1=7-6i,z2=4-7i,则z1-z2=(  )
A.3+iB.3-iC.11-13iD.3-13i

查看答案和解析>>

同步练习册答案