精英家教网 > 高中数学 > 题目详情
18.下列可以作为直线2x-y+1=0的参数方程的是(  )
A.$\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.(t为参数)$B.$\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.(t为参数)$
C.$\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.(t为参数)$D.$\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.(t为参数)$

分析 直线2x-y+1=0经过点(1,3),斜率k=2,即可得出直线的参数方程.

解答 解:直线2x-y+1=0经过点(1,3),斜率k=2,
可得直线的参数方程的是$\left\{\begin{array}{l}{x=1-t}\\{y=3-2t}\end{array}\right.$(t为参数).
故选:C.

点评 本题考查了直角坐标方程化为参数方程,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.现有4名男生、3名女生站成一排照相.(用数字作答)
(1)两端是女生,有多少种不同的站法?
(2)任意两名女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设A、B、C、D、E、F是正六边形的顶点,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,试用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{EF}和\overrightarrow{AE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a+b<0,且b>0,那么a,b,-a,-b的大小关系是(  )
A.-b<a<b<-aB.-b<a<-a<bC.a<-b<b<-aD.a<-b<-a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(2)+ln x,则f′(2)=(  )
A.-eB.$\frac{1}{2}$C.-$\frac{1}{2}$D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有3个旅游团分别从奇台县江布拉克、古城公园、靖宁公园、恐龙沟、魔鬼城5个风景点中选择一处游览,不同的选法有(  )
A.15B.243C.125D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,连接椭圆的四个顶点得到的菱形面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0),|AB|=$\frac{{4\sqrt{2}}}{5}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线xsinα+y+2=0的倾斜角的取值范围是(  )
A.(0,$\frac{π}{4}$)∪($\frac{3}{4}$π,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.[0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π]D.[0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线L的极坐标方程为ρsin($\frac{π}{6}$-θ)=m(m为常数),圆C的参数方程为$\left\{\begin{array}{l}{x=-1+2sinα}\\{y=\sqrt{3}+2sinα}\end{array}\right.$(α为参数)
(1)求直线L的直角坐标方程和圆C的普通方程;
(2)若圆C关于直线L对称,求实数m的值.

查看答案和解析>>

同步练习册答案