精英家教网 > 高中数学 > 题目详情
6.已知a+b<0,且b>0,那么a,b,-a,-b的大小关系是(  )
A.-b<a<b<-aB.-b<a<-a<bC.a<-b<b<-aD.a<-b<-a<b

分析 利用不等式性质,做差法比较大小进行判定,

解答 解:∵a+b<0,且b>0,∴a<0,-b<0,a<-b
∵b-(-a)=b+a<0,∴b<-a
∴a<-b<b<-a
故选:C

点评 本题考查了不等式的性质,代数式大小比较,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知关于x的方程x2+(a+1)x+a+b+1=0的两个实根分别为一个椭圆,一个双曲线的离心率,则$\frac{b}{a}$的取值范围(  )
A.$(-1,-\frac{1}{2})$B.(-1,0)C.(-2,+∞)D.$(-2,-\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,-π<φ<0,x∈R)函数部分如图所示.
(Ⅰ)求函数f(x)表达式;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从1,2,3,4,7,9六个数中任取不相同的两个数,分别作为对数的底数和真数,可得到17个不同的对数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.sin(-375°)=(  )
A.$\frac{\sqrt{3}-\sqrt{2}}{2}$B.-$\frac{\sqrt{6}-\sqrt{2}}{4}$C.-$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{3}+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,维护设备的正常运行第一年各种费用约为10万元,且从第二年开始每年比上一年所需费用要增加10万元.
(1)求该设备给企业带来的总利润y(万元)与使用年数x(x∈N*)的函数关系;
(2)这套设备使用多少年,可使年平均利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列可以作为直线2x-y+1=0的参数方程的是(  )
A.$\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.(t为参数)$B.$\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.(t为参数)$
C.$\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.(t为参数)$D.$\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.(t为参数)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在下面的四个图象中,其中一个图象是函数f(x)=$\frac{1}{3}$x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)的图象,则f(1)等于(  )
A.$\frac{1}{3}$B.$\frac{7}{3}$C.-$\frac{1}{3}$D.-$\frac{1}{3}$或$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,已知一个八面体各棱长均为1,四边形ABCD为正方形,则下列命题中不正确的是(  )
A.不平行的两条棱所在直线所成的角为60°或90°
B.四边形AECF为正方形
C.点A到平面BCE的距离为$\frac{{\sqrt{6}}}{4}$
D.该八面体的顶点在同一个球面上

查看答案和解析>>

同步练习册答案