精英家教网 > 高中数学 > 题目详情
1.sin(-375°)=(  )
A.$\frac{\sqrt{3}-\sqrt{2}}{2}$B.-$\frac{\sqrt{6}-\sqrt{2}}{4}$C.-$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{3}+\sqrt{2}}{2}$

分析 利用诱导公式化简,再由两角差的正弦展开得答案.

解答 解:sin(-375°)=-sin375°=-sin(360°+15°)=-sin15°
=-sin(45°-30°)=-(sin45°cos30°-cos45°sin30°)
=-($\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}×\frac{1}{2}$)=$-\frac{\sqrt{6}-\sqrt{2}}{4}$.
故选:B.

点评 本题考查三角函数的化简求值,考查诱导公式及两角差的正弦的应用,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若x2017=a0+a1(x-1)+a2(x-1)2+…a2017(x-1)2017,则$\frac{{a}_{1}}{3}+\frac{{a}_{2}}{{3}^{2}}+…+\frac{{a}_{2017}}{{3}^{2017}}$=($\frac{4}{3}$)2017-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow m=({sinα,-1})$,$\overrightarrow n=({\sqrt{3},cosα})$,α∈(0,π).
(Ⅰ)若$\overrightarrow m⊥\overrightarrow n$,求角α;
(Ⅱ)求$|\overrightarrow m+\overrightarrow n|$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设A、B、C、D、E、F是正六边形的顶点,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,试用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{EF}和\overrightarrow{AE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示:
(1)试确定f(x)的解析式;
(2)f($\frac{α}{2π}$)=$\frac{1}{2}$,求cos($\frac{2π}{3}$+$\frac{α}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a+b<0,且b>0,那么a,b,-a,-b的大小关系是(  )
A.-b<a<b<-aB.-b<a<-a<bC.a<-b<b<-aD.a<-b<-a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(2)+ln x,则f′(2)=(  )
A.-eB.$\frac{1}{2}$C.-$\frac{1}{2}$D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,连接椭圆的四个顶点得到的菱形面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0),|AB|=$\frac{{4\sqrt{2}}}{5}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=Acos(wx+φ)(A>0,W>0)的部分图象如图所示,则f(1)+f(2)+…+f(2017)值为(  )
A.0B.2-$\sqrt{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案