精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow m=({sinα,-1})$,$\overrightarrow n=({\sqrt{3},cosα})$,α∈(0,π).
(Ⅰ)若$\overrightarrow m⊥\overrightarrow n$,求角α;
(Ⅱ)求$|\overrightarrow m+\overrightarrow n|$的最大值.

分析 (Ⅰ)由$\overrightarrow m⊥\overrightarrow n$,可得$\overrightarrow{m}•\overrightarrow{n}$=$\sqrt{3}$sinα-cosα=0,化为:tanα=$\frac{\sqrt{3}}{3}$.又α∈(0,π).即可得出.
(Ⅱ)$|\overrightarrow m+\overrightarrow n|$=$\sqrt{(\sqrt{3}+sinα)^{2}+(cosα-1)^{2}}$=$\sqrt{5+4sin(α-\frac{π}{6})}$,利用三角函数的单调性值域即可得出.

解答 解:(Ⅰ)∵$\overrightarrow m⊥\overrightarrow n$,∴$\overrightarrow{m}•\overrightarrow{n}$=$\sqrt{3}$sinα-cosα=0,化为:tanα=$\frac{\sqrt{3}}{3}$.又α∈(0,π).
∴α=$\frac{π}{6}$.
(Ⅱ)$|\overrightarrow m+\overrightarrow n|$=$\sqrt{(\sqrt{3}+sinα)^{2}+(cosα-1)^{2}}$=$\sqrt{5+4sin(α-\frac{π}{6})}$≤$\sqrt{5+4}$=3,
当且仅当sin$(α-\frac{π}{3})$=1,即α=$\frac{5π}{6}$时取等号.
因此$|\overrightarrow m+\overrightarrow n|$的最大值为3.

点评 本题考查了向量垂直与数量积的关系、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y-3≤0\\ x-y-3≤0\end{array}\right.$,设x2+y2+4x的最大值点为A,则经过点A和B(-2,-3)的直线方程为3x-5y-9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在如图1所示的平面图形中,△ADE是等腰三角形且AE=DE=$\sqrt{5}$,四边形ABCD为矩形,AD=2,CD=$\sqrt{2}$,△BCF为直角三角形.把△ADE与△BCF分别沿AD、BC折成如图2所示的几何体,且平面ADE⊥平面ABCD,CF⊥平面ABCD,

(1)求证:BD⊥EF;
(2)若CF=1,试求EF与面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若f(x)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{x}$,计算得当n=1时f(2)=$\frac{3}{2}$,当n≥2时有f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,…,因此猜测当n≥2时,一般有不等式f(2n)≥$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.计算:
(1)小明在数学考试中取得80分以上成绩的概率;
(2)小明考试及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,-π<φ<0,x∈R)函数部分如图所示.
(Ⅰ)求函数f(x)表达式;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列向量$\overrightarrow a$与$\overrightarrow b$共线(其中向量$\overrightarrow{e_1}与\overrightarrow{e_2}$不共线)的是(  )
A.$\overrightarrow a=4\overrightarrow{e_1}-5\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+4\overrightarrow{e_2}$B.$\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+3\overrightarrow{e_2}$
C.$\overrightarrow a=\frac{1}{2}\overrightarrow{e_1}+\frac{1}{3}\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+2\overrightarrow{e_2}$D.$\overrightarrow a=2\overrightarrow{e_1},\overrightarrow b=-4\overrightarrow{e_2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.sin(-375°)=(  )
A.$\frac{\sqrt{3}-\sqrt{2}}{2}$B.-$\frac{\sqrt{6}-\sqrt{2}}{4}$C.-$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{3}+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的不等式2x+$\frac{1}{(x-a)^{2}}$≥7在x∈(a,+∞)上恒成立,则实数a的最小值为2.

查看答案和解析>>

同步练习册答案