精英家教网 > 高中数学 > 题目详情
7.在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.计算:
(1)小明在数学考试中取得80分以上成绩的概率;
(2)小明考试及格的概率.

分析 (1)利用互斥事件概率加法公式能求出小明在数学考试中取得80分以上成绩的概率.
(2)利用互斥事件概率加法公式能求出小明考试及格的概率.

解答 解:(1)分别记小明的成绩“在90分以上“,“在80~89分“,“在70~79分“,“在60~69分“为事件B,C,D,E,
这四个事件彼此互斥,
∵在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,
在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07
∴小明在数学考试中取得80分以上成绩的概率:
P(B∪C)=P(B)+P(C)=0.18+0.51=0.69.
(2)小明考试及格的概率:
p(B∪C∪D∪E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.19+0.09=0.93.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}和{bn}满足${a_1}{a_2}{a_3}…{a_n}={2^{{b_{n}}}}$(n∈N*).若{an}是各项为正数的等比数列,且a1=4,b3=b2+6.
(Ⅰ)求an与bn
(Ⅱ)设cn=$\frac{1}{{\sqrt{a_n}}}-\frac{1}{b_n}$,记数列{cn}的前n项和为Sn
①求Sn
②求正整数k.使得对任意n∈N*,均有Sk≥Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B-cos2C-sin2A=-sinAsinB,sin(A-B)=cos(A+B).
(1)求角A、B、C;
(2)若a=$\sqrt{2}$,求三角形ABC的边长b的值及三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若如图框图所给的程序运行结果为S=28,那么判断框中应填入的关于k的条件是(  )
A.k≥8B.k>8C.k≥7D.k>9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各组对象不能组成集合的是(  )
A.里约热内卢奥运会的比赛项目B.中国文学四大名著
C.我国的直辖市D.抗日战争中著名的民族英雄

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow m=({sinα,-1})$,$\overrightarrow n=({\sqrt{3},cosα})$,α∈(0,π).
(Ⅰ)若$\overrightarrow m⊥\overrightarrow n$,求角α;
(Ⅱ)求$|\overrightarrow m+\overrightarrow n|$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow m=({{{log}_{\frac{1}{3}}}x,1-f(x)})$,$\overrightarrow n=({1,2+{{log}_3}x})$,且向量$\overrightarrow m$∥$\overrightarrow n$.
(Ⅰ)求函数y=f(x)的解析式及函数$y=f(cos(2x-\frac{π}{3}))$的定义域;
(Ⅱ)若函数g(x)=x2-ax+1,存在a∈R,对任意${x_1}∈[{\frac{1}{27},3}]$,总存在唯一x0∈[-1,1],使得f(x1)=g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示:
(1)试确定f(x)的解析式;
(2)f($\frac{α}{2π}$)=$\frac{1}{2}$,求cos($\frac{2π}{3}$+$\frac{α}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.天气预报说,在今后的三天中,每一天下雨的概率均为50%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用0,1,2,3,4表示下雨,用5,6,7,8,9表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907    966    191    925    271    932    812    458    569    683
431    257    393    027    556    488    730    113    537    989
据此估计,这三天中恰有两天下雨的概率近似为(  )
A.0.30B.0.35C.0.40D.0.50

查看答案和解析>>

同步练习册答案