精英家教网 > 高中数学 > 题目详情
18.已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B-cos2C-sin2A=-sinAsinB,sin(A-B)=cos(A+B).
(1)求角A、B、C;
(2)若a=$\sqrt{2}$,求三角形ABC的边长b的值及三角形ABC的面积.

分析 (1)利用余弦定理表示出cosC,把已知等式利用正弦定理化简,整理后代入计算求出cosC的值,即可确定出C的度数,由sin(A-B)=cos(A+B),可得sinA=cosA,由A为锐角,可得A,利用三角形内角和定理可求B的值.
(2)利用正弦定理可求b,进而根据三角形面积公式即可计算得解.

解答 解:(1)∵△ABC的三个内角为A,B,C,且cos2B-cos2C-sin2A=-sinAsinB.
可得:sin2C+sinAsinB=sin2A+sin2B,
∴由正弦定理化简得:c2+ab=a2+b2
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{ab}{2ab}$=$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{π}{3}$.
∵sin(A-B)=cos(A+B).即sinAcosB-cosAsinB=cosAcosB-sinAsinB,
∴sinA(sinB+cosB)=cosA(sinB+cosB),
∴sinA=cosA,
∴由A为锐角,可得A=$\frac{π}{4}$,B=π-A-C=$\frac{5π}{12}$.
(2)∵a=$\sqrt{2}$,A=$\frac{π}{4}$,B=$\frac{5π}{12}$,
∴由正弦定理可得:b=$\frac{a•sinB}{sinA}$=$\frac{\sqrt{6}+\sqrt{2}}{2}$,
∴三角形ABC的面积S=$\frac{1}{2}$absinC=$\frac{1}{2}×\sqrt{2}×$$\frac{\sqrt{6}+\sqrt{2}}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{3+\sqrt{3}}{4}$.

点评 本题考查了正弦定理、余弦定理、三角形面积计算公式,考查了转化思想,推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈N|x≤1},B={x|x2-x-2≤0},则A∩B=(  )
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤0\\ x-y-3≤0\end{array}\right.$,设x2+y2+4x的最大值点为A,则经过点A和B(-2,-3)的直线方程为(  )
A.3x-5y-9=0B.x+y-3=0C.x-y-3=0D.5x-3y+9=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.能够使sinx≥0和cotx≥0同时成立的x的集合是(  )
A.{x|0<x≤$\frac{π}{2}$}B.{x|2kπ≤x≤2kπ+$\frac{π}{2}$,k∈Z}
C.{x|2kπ<x≤2kπ+$\frac{π}{2}$,k∈Z}D.{x|kπ<x≤kπ+$\frac{π}{2}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角α终边上一点P(-2,3),则$\frac{cos(\frac{π}{2}+α)sin(π+α)}{cos(π-α)sin(3π-α)}$的值为(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在如图1所示的平面图形中,△ADE是等腰三角形且AE=DE=$\sqrt{5}$,四边形ABCD为矩形,AD=2,CD=$\sqrt{2}$,△BCF为直角三角形.把△ADE与△BCF分别沿AD、BC折成如图2所示的几何体,且平面ADE⊥平面ABCD,CF⊥平面ABCD,

(1)求证:BD⊥EF;
(2)若CF=1,试求EF与面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.全美职业篮球联赛(NBA)某年度总决赛在克利夫兰骑士队与金州勇士队之间角逐,比赛采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.因两队实力相当,故每场比赛获胜的可能性相等.据以往资料统计,第一场比赛组织者可获得门票收入2000万美元,以后每场比赛门票收入比上一场增加100万美元.当两队决出胜负后,
问:(1)组织者在此次决赛中要获得门票收入不少于13500万美元的概率为多少?
(2)某队在比赛过程中曾一度比分(胜一场得1分)落后2分以上(含2分),最后取得全场胜利称为“逆袭”,求骑士队“逆袭”获胜的概率;
(3)求此次决赛所需比赛场数的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.计算:
(1)小明在数学考试中取得80分以上成绩的概率;
(2)小明考试及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若数列{an}的通项公式是an=(-1)n(3n-1),前n项和为Sn,则S11等于(  )
A.-187B.-2C.-32D.-17

查看答案和解析>>

同步练习册答案