分析 (1)由题意可知:根据椭圆的离心率及菱形的面积公式,即可求得a和b的值,求得椭圆的方程;
(2)设直线l方程,代入椭圆方程,求得B点坐标,利用两点之间的距离公式,即可求得丨AB丨,即可求得k的值,求得直线l的倾斜角.
解答 解:(1)由椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{{\sqrt{3}}}{2}$,则a2=4b2,a=2b,①
由$\frac{1}{2}$×2a×2b=4,即ab=2,②
由①②解得:a=2,b=1,
∴椭圆的方程$\frac{x^2}{4}+{y^2}=1$;
(2)由题知,A(-2,0),直线l斜率存在,故设l:y=k(x+2),
则$\left\{\begin{array}{l}y=k({x+2})\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,整理得:(1+4k2)x2+16k2x+(16k2-4)=0,△>0,
由$-2{x_1}=\frac{{16{k^2}-4}}{{1+4{k^2}}}$,得${x_1}=\frac{{2-8{k^2}}}{{1+4{k^2}}}$,${y_1}=\frac{4k}{{1+4{k^2}}}$,
∴$|{AB}|=\sqrt{{{({-2-{x_1}})}^2}+{{({0-{y_1}})}^2}}=\frac{{4\sqrt{1+{k^2}}}}{{1+4{k^2}}}$,
∴$\frac{{4\sqrt{1+{k^2}}}}{{1+4{k^2}}}=\frac{{4\sqrt{2}}}{5}$,∴k=±1.
故直线的倾斜角为$\frac{π}{4}$或$\frac{3π}{4}$.
点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查两点之间的距离公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}-\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{6}-\sqrt{2}}{4}$ | C. | -$\frac{\sqrt{6}+\sqrt{2}}{4}$ | D. | $\frac{\sqrt{3}+\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.(t为参数)$ | B. | $\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.(t为参数)$ | ||
| C. | $\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.(t为参数)$ | D. | $\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.(t为参数)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{7}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{1}{3}$或$\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com