精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(2)+ln x,则f′(2)=(  )
A.-eB.$\frac{1}{2}$C.-$\frac{1}{2}$D.e

分析 将f′(2)看出常数利用导数的运算法则求出f′(x),令x=2即可求出f′(2).

解答 解:f′(x)=2f′(2)+$\frac{1}{x}$
令x=2得f′(2)=2f′(2)+$\frac{1}{2}$
∴f′(2)=-$\frac{1}{2}$,
故选:C

点评 本题考查导数的运算法则、考查通过赋值求出导函数值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在如图1所示的平面图形中,△ADE是等腰三角形且AE=DE=$\sqrt{5}$,四边形ABCD为矩形,AD=2,CD=$\sqrt{2}$,△BCF为直角三角形.把△ADE与△BCF分别沿AD、BC折成如图2所示的几何体,且平面ADE⊥平面ABCD,CF⊥平面ABCD,

(1)求证:BD⊥EF;
(2)若CF=1,试求EF与面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列向量$\overrightarrow a$与$\overrightarrow b$共线(其中向量$\overrightarrow{e_1}与\overrightarrow{e_2}$不共线)的是(  )
A.$\overrightarrow a=4\overrightarrow{e_1}-5\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+4\overrightarrow{e_2}$B.$\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+3\overrightarrow{e_2}$
C.$\overrightarrow a=\frac{1}{2}\overrightarrow{e_1}+\frac{1}{3}\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+2\overrightarrow{e_2}$D.$\overrightarrow a=2\overrightarrow{e_1},\overrightarrow b=-4\overrightarrow{e_2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.sin(-375°)=(  )
A.$\frac{\sqrt{3}-\sqrt{2}}{2}$B.-$\frac{\sqrt{6}-\sqrt{2}}{4}$C.-$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{3}+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若数列{an}的通项公式是an=(-1)n(3n-1),前n项和为Sn,则S11等于(  )
A.-187B.-2C.-32D.-17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列可以作为直线2x-y+1=0的参数方程的是(  )
A.$\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.(t为参数)$B.$\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.(t为参数)$
C.$\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.(t为参数)$D.$\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.(t为参数)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=x3+log2x,$则\lim_{t→0}\frac{f(1+t)-f(1)}{t}$=3+$\frac{1}{ln2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的不等式2x+$\frac{1}{(x-a)^{2}}$≥7在x∈(a,+∞)上恒成立,则实数a的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC周长为6,a,b,c分别为角A,B,C的对边,且a,b,c成等比数列,则$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范围为(  )
A.[2,18)B.($\frac{3(\sqrt{5}-1)}{2}$,2]C.[2,$\frac{27-9\sqrt{5}}{2}$)D.(2,9-3$\sqrt{5}$)

查看答案和解析>>

同步练习册答案