精英家教网 > 高中数学 > 题目详情
9.设A、B、C、D、E、F是正六边形的顶点,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,试用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{EF}和\overrightarrow{AE}$.

分析 利用正六边形的性质、向量共线、向量的平行四边形法则即可得出.

解答 解:如图:$\overrightarrow{EF}$=$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$=$\overrightarrow{b}$-$\overrightarrow{a}$,
$\overrightarrow{AE}$=$\overrightarrow{AD}$-$\overrightarrow{ED}$=2$\overrightarrow{BC}$-$\overrightarrow{AB}$=2($\overrightarrow{b}$-$\overrightarrow{a}$)-$\overrightarrow{a}$=2$\overrightarrow{b}$-$\overrightarrow{a}$

点评 本题考查了正六边形的性质、向量共线、向量的平行四边形法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知四棱锥A-BCDE,其中AB=BC=AC=BE=1,CD⊥面ABC,BE∥CD,F为AD的中点.
(1)求证:EF∥面ABC;
(2)求证:面ADE⊥面ACD;
(3)求四棱锥A-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若f(x)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{x}$,计算得当n=1时f(2)=$\frac{3}{2}$,当n≥2时有f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,…,因此猜测当n≥2时,一般有不等式f(2n)≥$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,-π<φ<0,x∈R)函数部分如图所示.
(Ⅰ)求函数f(x)表达式;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列向量$\overrightarrow a$与$\overrightarrow b$共线(其中向量$\overrightarrow{e_1}与\overrightarrow{e_2}$不共线)的是(  )
A.$\overrightarrow a=4\overrightarrow{e_1}-5\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+4\overrightarrow{e_2}$B.$\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+3\overrightarrow{e_2}$
C.$\overrightarrow a=\frac{1}{2}\overrightarrow{e_1}+\frac{1}{3}\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+2\overrightarrow{e_2}$D.$\overrightarrow a=2\overrightarrow{e_1},\overrightarrow b=-4\overrightarrow{e_2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从1,2,3,4,7,9六个数中任取不相同的两个数,分别作为对数的底数和真数,可得到17个不同的对数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.sin(-375°)=(  )
A.$\frac{\sqrt{3}-\sqrt{2}}{2}$B.-$\frac{\sqrt{6}-\sqrt{2}}{4}$C.-$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{3}+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列可以作为直线2x-y+1=0的参数方程的是(  )
A.$\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.(t为参数)$B.$\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.(t为参数)$
C.$\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.(t为参数)$D.$\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.(t为参数)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sin(2x+$\frac{π}{6}$)(x∈R).
( I)用“五点法”画出函数f(x)在一个周期内的图象;
( II)令g(x)=f(-x)求函数g(x)的单调增区间.

查看答案和解析>>

同步练习册答案