| A. | 不平行的两条棱所在直线所成的角为60°或90° | |
| B. | 四边形AECF为正方形 | |
| C. | 点A到平面BCE的距离为$\frac{{\sqrt{6}}}{4}$ | |
| D. | 该八面体的顶点在同一个球面上 |
分析 由已知求出图中任意两棱所成角的大小判断A、B正确;再由等积法求出点A到平面BCE的距离说明C错误;由ABCD为正方形,AECF为正方形,且两正方形边长相等,中心都为AC的中点说明D正确.
解答 解:∵八面体的各条棱长均为1,四边形ABCD为正方形,![]()
∴在四棱锥E-ABCD中,相邻两条侧棱所成的角为60°,
∵AE=CE=1,AC=$\sqrt{2}$,满足AE2+CE2=AC2,∴AE⊥CE,
同理AF⊥CF,则四边形AECF是正方形.
再由异面直线所成角概念可知,图中每一条棱与和其异面的棱所成角为60°.
故A、B正确;
设点A到平面BCE的距离h,由VE-ABCD=2VA-BCE,
得$\frac{1}{3}$×1×1×$\frac{\sqrt{2}}{2}$=2×$\frac{1}{3}$×$\frac{\sqrt{3}}{4}h$,解得h=$\frac{\sqrt{6}}{3}$,
∴点A到平面BCE的距离为$\frac{\sqrt{6}}{3}$,故C错误;
由ABCD为正方形,AECF为正方形,且两正方形边长相等,中心都为AC的中点,
∴该八面体的顶点在以AC中点为球心,以$\frac{\sqrt{2}}{2}$为半径的球面上,故D正确.
∴不正确的命题是C.
故选:C.
点评 本题考查命题的真假判断与应用,考查立体几何中线线关系以及线面关系,利用了等积法求点到平面的距离,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | -b<a<b<-a | B. | -b<a<-a<b | C. | a<-b<b<-a | D. | a<-b<-a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{4}$)∪($\frac{3}{4}$π,π) | B. | ($\frac{π}{4}$,$\frac{3}{4}$π) | C. | [0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π] | D. | [0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}={(-1)^n}•\frac{n-2}{n+1}$ | B. | ${a_n}={(-1)^{n+1}}•\frac{n-1}{n+2}$ | ||
| C. | ${a_n}={(-1)^{n-1}}•\frac{n-1}{n+1}$ | D. | ${a_n}={(-1)^{n-1}}•\frac{n-2}{n+2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2-$\sqrt{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,12) | B. | (-2,12) | C. | 14 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 4 | C. | -3 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com