精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠BAD=45°,AD=1,AB=
2
,△PAD是正三角形,平面PAD⊥平面PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)求三棱锥P-BCD的体积.
考点:棱柱、棱锥、棱台的体积,空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:(Ⅰ)要证明PA⊥BD,可以证BD⊥平面PAD,由平面PAD⊥平面PBD,证出PD⊥BD即可;
(Ⅱ)取AD的中点E,连结PE,得PE为三棱锥P-BCD的高;求出高PE,底面积S△BCD,即得三棱锥P-BCD的体积.
解答: 解:(Ⅰ)证明:由∠BAD=45°,AD=1,AB=
2
,利用余弦定理,可得
BD=
AD2+AB2-2×AD×AB×cos∠BAD
=
12+(
2
)
2
-2×1×
2
×cos45°
=1

∴AD⊥BD;
又∵平面PAD⊥平面PBD,∴BD⊥平面PAD;
又PA?平面PAD,∴PA⊥BD.
(Ⅱ)由(Ⅰ)知BD⊥平面PAD,又BD?平面ABCD,∴平面PAD⊥平面ABCD;
取AD的中点E,连结PE,∵△PAD是正三角形,∴PE⊥AD;
∴PE⊥平面ABCD,即PE为三棱锥P-BCD的高;
在正△PAD中,AD=1,∴PE=
3
2

∴三棱锥P-BCD的体积为V=
1
3
×S△BCD×PE=
1
3
×
1
2
×1×1×
3
2
=
3
12
点评:本题考查了空间中的线线垂直,线面垂直以及面面垂直问题,也考查了利用垂直关系求锥体的体积问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数(
1
2
+
3
2
i)2012的共轭复数是(  )
A、-
1
2
+
3
2
i
B、-
1
2
-
3
2
i
C、
1
2
+
3
2
i
D、
1
2
-
3
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图)
分 组 频率
频率
组距
[1000,1500)  
 
 
 
[1500,2000)  
 
0.0004
[2000,2500)  
 
 
 
[2500,3000)  
 
0.0005
[3000,3500)  
 
 
 
[3500,4000]  
 
0.0001
合 计  
 
 
 
(1)根据频率分布直方图完成以上表格;
(2)用组中值估计这10 000人月收入的平均值;
(3)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2000,3500)(元)月收入段应抽出多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x-ln|x|.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)请用描点法画出函数f(x)的大致图象;
(2)设实常数a,b满足ab>0,试求f(x)在闭区间[a,b]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等比数列{an}中,a5=162,公比q=3,前n项和Sn=242,求首项a1和项数n.
(2)有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c为实数,函数f(x)=x3-ax2-bx+c为R上的奇函数,且在区间[1,+∞)上单调.
(1)求a,b,c应满足的条件;
(2)求函数f(x)的单调区间;
(3)设x0≥1,f(x0)≥1,且f[f(x0)]=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知射线OA:x-y=0(x≥0),OB:2x+y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于点C、D.
(1)当△COP的面积等于△DOP面积时,求直线CD的方程;
(2)当CD的中点在直线x-2y=0上时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果椭圆
x2
16
+
y2
4
=1上任意两点连线的垂直平分线与x轴相交于点P(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
-
2
x
n展开式中第三项的系数比第二项的系数大162,求:
(1)n的值;
(2)展开式中含x3的项.

查看答案和解析>>

同步练习册答案