【题目】在平面直角坐标系
中,曲线C的参数方程为
(
为参数).以坐标原点O为极,z轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)求曲线C的普通方程和直线
的直角坐标方程;
(Ⅱ)设点
.若直线
与曲线C相交于A,B两点,求
的值.
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
平面
为正三角形, 侧面
是边长为
的正方形,
为
的中点.
![]()
(1)求证
平面
;
(2)求二面角
的余弦值;
(3)试判断直线
与平面
的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数
是反映空气质量状况的指数,
指数值越小,表明空气质量越好,其对应关系如表:
|
|
|
|
|
|
|
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某市10月1日—20日
指数变化趋势:
![]()
下列叙述正确的是( )
A.该市10月的前半个月的空气质量越来越好
B.这20天中的中度污染及以上的天数占![]()
C.这20天中
指数值的中位数略高于100
D.总体来说,该市10月上旬的空气质量比中旬的空气质量差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高新企业自2012年成立以来,不断创新技术与产品,积极拓展市场,销售收入
(单位万元)与年份代号
之间对应关系如下表,且满足回归函数
,记
。
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售收入 | 80 | 199 | 398 | 2512 | 6310 | 15848 | 79432 |
| 1.9 | 2.3 | 2.6 | 3.4 | 3.8 | 4.2 | 4.9 |
(1)任取2年对比销售收入的情况,求这2年中销售收入均超过400万元的概率;
(2)求回归函数
中
的值。
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为
六个小组(所调查的居民平均每天运动时长均在
内),得到的频率分布直方图如图所示.
![]()
(1)求出图中
的值,并估计这
名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);
(2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在
时间段内应抽出多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一幢高楼上安放了一块高约10 米的 LED 广告屏,一测量爱好者在与高楼底部同一水平线上的 C 处测得广告屏顶端A 处的仰角为 31.80°,再向大楼前进 20 米到 D 处,测得广告屏顶端 A 处的仰角为 37.38°(人的高度忽略不计).
(1)求大楼的高度(从地面到广告屏顶端)(精确到 1 米);
(2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长 椅的高度忽略不计),长椅需安置在距大楼底部 E 处多远?已知视角 ∠AMB( M 为观测者的位置, B 为广告屏 底部)越大,观看得越清晰.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
中,
侧面
,已知
,
,
,点
是棱
的中点.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)在棱
上是否存在一点
,使得
与平面
所成角的正弦值为
,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com