【题目】已知函数
,
.
(1)若函数
有唯一的极小值点,求实数
的取值范围;
(2)求证:
.
【答案】(1)
且
.(2)证明见解析
【解析】
(1)对函数进行求导,分类讨论根据函数有唯一极小值点,最后求出实数
的取值范围;
(2)对所要证明的式子进行变形,构造函数:
,求导,最后利用函数的单调性证明出结论.
解:
,
,
![]()
,
,
设
,
当
时,
,在
时,
,即
,所以
单调递减,
在
时,
,
,所以
单调递增,所以函数
有唯一的极小值
点成立;
当
时,令
,得
,
,
在
时,
,即
,所以
单调递减,
在
时,
,
,所以
单调递增,
所以函数
有唯一的极小值点成立;
当
时,令
,得
,
,当
时不合题意,
则
,且
,即
且
,
设
,
,
在
时,
,即
,所以
单调递减,
在
时,
,
,所以
单调递增,
在
时,
,即
,所以
单调递减,
所以函数
有唯一的极小值点成立;
综上所述,
的取值范围为
且
.
(2)令
,
,
则![]()
,
令
,易知
在
上单增,且
,
所以当
时,
,从而
,当
时,
,从而
,
在
单减,在
单增,则
的最小值为
,所以当
时,
,即
,
即
,所以
,
所以
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线C的参数方程为
(
为参数).以坐标原点O为极,z轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)求曲线C的普通方程和直线
的直角坐标方程;
(Ⅱ)设点
.若直线
与曲线C相交于A,B两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:![]()
的两个焦点为
,
,焦距为
,直线
:
与椭圆
相交于
,
两点,
为弦
的中点.
(1)求椭圆的标准方程;
(2)若直线
:
与椭圆
相交于不同的两点
,
,
,若
(
为坐标原点),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与抛物线
:
交于
,
两点,且
的面积为16(
为坐标原点).
(1)求
的方程.
(2)直线
经过
的焦点
且
不与
轴垂直,
与
交于
,
两点,若线段
的垂直平分线与
轴交于点
,试问在
轴上是否存在点
,使
为定值?若存在,求该定值及
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线
的参数方程为
(
为参数),圆
的极坐标方程为
.
(1)求直线
的普通方程与圆
的直角坐标方程;
(2)设圆
与直线
交于
两点,若点
的直角坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为配合国家“一带一路”战略,发展城市旅游经济,拟在景观河道的两侧,沿河岸直线
与
修建景观(桥),如图所示,河道为东西方向,现要在矩形区域
内沿直线将
与
接通.已知
,
,河道两侧的景观道路修复费用为每米
万元,架设在河道上方的景观桥
部分的修建费用为每米
万元.
![]()
(1)若景观桥长
时,求桥与河道所成角的大小;
(2)如何景观桥
的位置,使矩形区域
内的总修建费用最低?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点
为圆心,1为半径的圆相切,又知C的一个焦点与P关于直线
对称.
(1)求双曲线C的方程;
(2)设直线
与双曲线C的左支交于A、B两点,另一直线
经过
及AB的中点,求直线
在y轴上的截距b的取值范围;
(3)若Q是双曲线C上的任一点,
、
为双曲线C的左、右两个焦点,从
引
的角平分线的垂线,垂足为N,试求点N的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com