精英家教网 > 高中数学 > 题目详情
10.如图,正三棱柱ABC-A1B1C1(底面是正三角形,侧棱垂直底面)的各条棱长均相等,D为AA1的中点.M、N分别是BB1、CC1上的动点(含端点),且满足BM=C1N.当M,N运动时,下列结论中不正确的是(  )
A.平面DMN⊥平面BCC1B1
B.三棱锥A1-DMN的体积为定值
C.△DMN可能为直角三角形
D.平面DMN与平面ABC所成的锐二面角范围为(0,$\frac{π}{4}$]

分析 由BM=C1N,得线段MN必过正方形BCC1B1的中心O,由DO⊥平面BCC1B1,可得平面DMN⊥平面BCC1B1
由△A1DM的面积不变,N到平面A1DM的距离不变,得到三棱锥A1-DMN的体积为定值;
利用反证法思想说明△DMN不可能为直角三角形;
平面DMN与平面ABC平行时所成角为0,当M与B重合,N与C1重合时,平面DMN与平面ABC所成的锐二面角最大.

解答 解:如图,

当M、N分别在BB1、CC1上运动时,若满足BM=C1N,则线段MN必过正方形BCC1B1的中心O,而DO⊥平面BCC1B1,∴平面DMN⊥平面BCC1B1,A正确;
当M、N分别在BB1、CC1上运动时,△A1DM的面积不变,N到平面A1DM的距离不变,∴棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,B正确;
若△DMN为直角三角形,则必是以∠MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,∴△DMN不可能为直角三角形,C错误;
当M、N分别为BB1,CC1中点时,平面DMN与平面ABC所成的角为0,当M与B重合,N与C1重合时,平面DMN与平面ABC所成的锐二面角最大,为∠C1BC,等于$\frac{π}{4}$.
∴平面DMN与平面ABC所成的锐二面角范围为(0,$\frac{π}{4}$],D正确.
故选:C.

点评 本题考查了命题的真假判断与应用,考查了棱柱的结构特征,考查了空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=alnx+$\frac{a}{2}$x2+x,g(x)=$\frac{a-2}{2}$x2+(a+1)x+$\frac{a+2}{2}$;
(1)若f(x)在(1,f(1))处的切线方程为x+y+b=0,求a,b的值;
(2)是否存在实数a使得f(x)在(0,+∞)上单调递减,g(x)在(0,$\frac{1}{5}$)上单调递增,若存在,求出a的值,若不存在,请说明理由.
(3)令H(x)=f(x+1)-g(x),若x1,x2(x1<x2)是H(x)的两个极值点,证明:(-$\frac{1}{2}$+ln2)x1<H(x2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知命题P:?b∈(-∞,2),f(x)=x2+bx+c在(-∞,-1)上为减函数;命题Q:?x0∈Z,使得2${\;}^{{x}_{0}}$<1.则在命题¬P∨¬Q,¬P∧¬Q,P∨¬Q,P∧¬Q中任取一个命题,则取得真命题的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在一次数学测试(满分为150分)中,某校2000名考生的分数X近似服从正态分布N(100,σ2).据统计,分数在100~110分段的考生共440人,估计分数在90分以上的考生大概有(  )人.
A.560B.880C.1120D.1440

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,则|x-2y-1|的取值范围是[0,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2x+$\frac{1}{x}$+λlnx(x>0).
(1)若x=1是函数f(x)的一个极值点,求λ的值;
(2)求函数f(x)极值的个数;
(3)若对于任意两个不相等的正数x1,x2均有|f′(x1)-f′(x2)|<|x1-x2|恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x,y满足约束条件$\left\{\begin{array}{l}x<0\\ y>0\\ x+y-2≤0\\ x-y+4≥0\end{array}\right.$,若目标函数z=x+my(m≠0)取得最大值时最优解有无数个,则m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义在实数集R上的函数y=f(x)的图象是连续不断的,对任意实数x,若存在实常数t使得f(t+x)=-tf(x)恒成立,则称f(x)是一个“t型函数”.在下列关于“t型函数”的四个命题中,其中真命题是(  )
A.f(x)=0是常值函数中唯一一个“t型函数”
B.f(x)=x2是一个“t型函数”
C.f(x)=|x-$\frac{1}{2}$|是一个“t型函数”
D.“$\frac{1}{2}$型函数”至少有一个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设$\overrightarrow a,\overrightarrow b,\overrightarrow c$是单位向量,且$\overrightarrow a•\overrightarrow b=0,则({\overrightarrow a+\overrightarrow c})•({\overrightarrow b+\overrightarrow c})$的最大值为$\sqrt{2}+1$.

查看答案和解析>>

同步练习册答案