精英家教网 > 高中数学 > 题目详情
20.设$\overrightarrow a,\overrightarrow b,\overrightarrow c$是单位向量,且$\overrightarrow a•\overrightarrow b=0,则({\overrightarrow a+\overrightarrow c})•({\overrightarrow b+\overrightarrow c})$的最大值为$\sqrt{2}+1$.

分析 将所求展开,利用已知三个向量为单位向量,并且$\overrightarrow{a}•\overrightarrow{b}$=0,得到所求为$\overrightarrow{c}•(\overrightarrow{a}+\overrightarrow{b})$+1,利用商量下公式求最值.

解答 解:由已知得到$(\overrightarrow{a}+\overrightarrow{c})•(\overrightarrow{b}+\overrightarrow{c})$=$\overrightarrow{a}•\overrightarrow{b}+\overrightarrow{a}•\overrightarrow{c}+\overrightarrow{c}•\overrightarrow{b}+{\overrightarrow{c}}^{2}$=$\overrightarrow{c}•(\overrightarrow{a}+\overrightarrow{b})$+1;
根据几何意义,|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{2}$,设$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{c}$的夹角为θ,则$\overrightarrow{c}•(\overrightarrow{a}+\overrightarrow{b})$+1=($\sqrt{2}+1$)cosθ,所以最大值为$\sqrt{2}+1$;
故答案为:$1+\sqrt{2}$.

点评 本题考查了向量的数量积公式的运用;关键是将所求变形为向量夹角的式子.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图,正三棱柱ABC-A1B1C1(底面是正三角形,侧棱垂直底面)的各条棱长均相等,D为AA1的中点.M、N分别是BB1、CC1上的动点(含端点),且满足BM=C1N.当M,N运动时,下列结论中不正确的是(  )
A.平面DMN⊥平面BCC1B1
B.三棱锥A1-DMN的体积为定值
C.△DMN可能为直角三角形
D.平面DMN与平面ABC所成的锐二面角范围为(0,$\frac{π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,点E,F分别在正方体ABCD-A1B1C1D1的棱DD1、AB上,下列命题:
①A1C⊥B1E;
②在平面A1B1C1D1内总存在于平面B1EF平行的直线;
③△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;
④当E、F为中点时,平面B1EF截该正方体所得的截面图形是五边形;
⑤若点P为线段EF的中点,则其轨迹为一个矩形的四周.
其中所有真命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数 f(x)=lnx-ax(a∈R)有两个不相等的零点 x1,x2(x1<x2
(I)求a的取值范围;
(Ⅱ)判断$\frac{2}{{{x_1}+{x_2}}}$与a的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知B,C两点在圆O:x2+y2=1上,A(a,0)为x轴上一点,且a>l.给出以下命题:
①$\overrightarrow{OA}$•$\overrightarrow{OC}$的最小值为一1;
②△OBC面积的最大值为1;
③若a=$\sqrt{2}$,且直线AB,AC都与圆O相切,则△ABC为正三角形;
④若a=$\sqrt{2}$,且$\overrightarrow{AB}$=λ$\overrightarrow{BC}$(λ>0),则当△OBC面积最大时,|AB|=$\frac{\sqrt{6}-\sqrt{2}}{2}$;
⑤若a=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{AB}$=$λ\overrightarrow{BC}$,圆O上的点D满足$\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OD}$,则直线BC的斜率是$±\frac{1}{2}$.
其中正确的是⑤(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=|$\frac{1}{2}$x+1|+|x|(x∈R)的最小值为a.
(Ⅰ)求a;
(Ⅱ)已知两个正数m,n满足m2+n2=a,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)证明:①C${\;}_{n}^{r}$+C${\;}_{n}^{r+1}$=C${\;}_{n+1}^{r+1}$;②C${\;}_{2n+2}^{n+1}$=2C${\;}_{2n+1}^{n}$(其中n,r∈N*,0≤r≤n-1);
(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>$\frac{1}{2}$),首先赢满n+1局者获胜(n∈N*).
①若n=2,求甲获胜的概率;
②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>1)
(Ⅰ)判断函数f(x)的奇偶性
(Ⅱ)判断f(x)在(-∞,+∞)上的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知m∈R,n∈R,并且m+3n=1,则em+e3n的最小值$2\sqrt{e}$.

查看答案和解析>>

同步练习册答案