精英家教网 > 高中数学 > 题目详情
求圆心在C(2,-1),且截直线y=x-1所得的弦长为2
2
的圆的方程.
考点:圆的标准方程
专题:直线与圆
分析:由条件求出弦心距,再利用弦长公式求出半径,即可求得圆的标准方程.
解答: 解:设半径为r,由于弦长l=2
2
,弦心距d=
|2-(-1)-1|
2
=
2

∴r=
d2+(
l
2
)
2
=
2+2
=2,故圆的方程为 (x-2)2+(y+1)2=4.
点评:本题主要考查直线和圆的位置关系,求圆的标准方程,点到直线的距离公式,弦长公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若定义在R上奇函数f(x)满足f(x)=f(x+5),且f(1)=1,则f(4)=(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域为(-∞,0)∪(0,+∞),对定义域内的任意两个实数x,y,都有f(xy)=f(x)+f(y),并且当x>1时,f(x)>0,且f(4)=2
(1)证明函数y=f(x)为偶函数;
(2)证明函数f(x)在(0,+∞)上为增函数;
(3)若函数g(x)=2x-2,且当a∈[1,4]时,有f(a)=g(b),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数y=f(x)满足:①f(x)=f(2-x);②当0≤x≤1时,f(x)=x2
(1)求f(5.5)的值;
(2)证明:x∈R时,f(x+2)=f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+
3
2
)+
2
x
,g(x)=
1
x2-1
+a;
(1)求函数f(x)的单调区间;
(2)若方程g(x)=ln(x2+1)有4个不同的实根,求a的范围?
(3)是否存在正数b,使得关于x的方程f(x)=blnx有两个不相等的实根?如果存在,求b满足的条件,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若M
|ab(a2-b2)+bc(b2-c2)+ca(c2-a2)|
a2+b2+c2
对一切实数a、b、c都成立,求最小的实数M.

查看答案和解析>>

科目:高中数学 来源: 题型:

某软件公司研发了多款软件,其中A,B,C三种软件供高中生使用,经某高中使用一学年后,该公司调查了这个学校同一年级四个班的使用情况,从各班抽取的样本人数如下表:
班级
人数 3 2 3 4
(1)从这12人中随机抽取2人,求这2人恰好来自同一个班级的概率;
(2)从这12人中,指定甲、乙、丙3人为代表,已知他们每人选择一款软件,其中选A,B两款软件的概率都是
1
6
,且他们选择A,B,C任一款软件都是相互独立的.设这3名学生中选择软件C的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某海域设立东西方向两个观测点A、B,相距
20
3
3
海里.现接到一艘渔船发出的求救讯号,测出该船位于点A北偏东30°,点B北偏西60°的C点.立刻通知位于B观测点南偏西60°且与B点相距16海里的D处的救援船前去营救,若救援船以28海里/小时的航速前往,问需要多长时间到达C处?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,0),B(5,9),动点D满足条件:
OD
=t
OA
+(1-t)
OB
,t∈R.
(1)求动点D的轨迹的参数方程(以t为参数);
(2)动点D的轨迹与抛物线y2=9x相交于P,Q两点,求线段PQ中点M的坐标.

查看答案和解析>>

同步练习册答案