精英家教网 > 高中数学 > 题目详情
6.85(9) 转换为十进制数是77.

分析 利用累加权重法,即可将九进制数转化为十进制,从而得解.

解答 解:由题意,85(9)=8×91+5×90=77,
故答案为:77.

点评 本题考查九进制与十进制之间的转化,熟练掌握九进制与十进制之间的转化法则是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{x}{ax+b}$,a,b∈R,a≠0,b≠0,f(1)=$\frac{1}{2}$,且方程f(x)=x有且仅有一个实数解;
(1)求a、b的值;
(2)当x∈($\frac{1}{4}$,$\frac{1}{2}$]时,不等式(x+1)•f(x)>m(m-x)-1恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=ax4+bx2-x+1(a,b∈R),若f(2)=9,则f(-2)=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为($0,\frac{3}{2}$),它在y轴右侧的第一个最高点和最低点分别为(x0,3),(x0+2π,-3).
(1)求函数y=f(x)的解析式;
(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
(3)求这个函数的单调递增区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线l:3x+4y+m=0(m>0)被圆C:x2+y2+2x-2y-6=0所截的弦长是圆心C 到直线l的距离的2倍,则m=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.从一批土鸡蛋中,随机抽取n个得到一个样本,其重量(单位:克)的频数分布表如表:
分组(重量)[80,85)[85,90)[90,95)[95,100]
频数(个)1050m15
已知从n个土鸡蛋中随机抽取一个,抽到重量在在[90,95)的土鸡蛋的根底为$\frac{4}{19}$
(1)求出n,m的值及该样本的众数;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的土鸡蛋中共抽取5个,再从这5个土鸡蛋中任取2 个,其重量分别是g1,g2,求|g1-g2|≥10概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个多面体内接于一个旋转体,其正视图、侧视图及俯视图都是一个圆的正中央含一个正方形,如图,若正方形的边长是1,则该旋转体的表面积是3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果圆x2+y2+Dx+Ey+F=0经过原点,而且与x轴只有一个交点,那么(  )
A.F=0,D≠0,E≠0B.E=F=0,D≠0C.D=F=0,E≠0D.D=E=0,F≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a+$\frac{1}{4^x+1}$是奇函数.
(1)求实数a的值;   
(2)确定函数f(x)的单调性;    
(3)当x∈[-1,2)时,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案