分析 用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AE},\overrightarrow{AC}$,再计算$\overrightarrow{AE}•\overrightarrow{AC}$.
解答
解:$\overrightarrow{AB}•\overrightarrow{AD}$=0,${\overrightarrow{AB}}^{2}$=4,${\overrightarrow{AD}}^{2}$=1,
$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$,$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,
∴$\overrightarrow{AE}•\overrightarrow{AC}$=($\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$)•($\overrightarrow{AB}$+$\overrightarrow{AD}$)=${\overrightarrow{AB}}^{2}$+$\frac{1}{2}$${\overrightarrow{AD}}^{2}$=4+$\frac{1}{2}$=$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.
点评 本题考查了平面向量的数量积运算,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |x1+x2|$\sqrt{1+{k^2}}$ | B. | |x1+x2|$\sqrt{1+\frac{1}{k^2}}$ | C. | |x1-x2|$\sqrt{1+\frac{1}{k^2}}$ | D. | |x1-x2|$\sqrt{1+{k^2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | T=T•T$\sqrt{a}$ | B. | T=T•Ta | C. | T=T•a | D. | T=T•T$\sqrt{Ta}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,3] | B. | [3,+∞) | C. | [9,+∞) | D. | [3,9] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com