| A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | 4 |
分析 设|$\overrightarrow{OM}$|=x,x≥0,求得|$\overrightarrow{OA}$$+\overrightarrow{OM}$|=$\sqrt{{(\overrightarrow{OA}+\overrightarrow{OM})}^{2}}$=$\sqrt{{(x+1)}^{2}+3}$,再利用二次函数的性质,求得它的最小值.
解答 解:向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为$\frac{π}{3}$,|$\overrightarrow{OA}$|=2,若点M在直线OB上,设|$\overrightarrow{OM}$|=x,x≥0,
则|$\overrightarrow{OA}$$+\overrightarrow{OM}$|=$\sqrt{{(\overrightarrow{OA}+\overrightarrow{OM})}^{2}}$=$\sqrt{{\overrightarrow{OA}}^{2}{+\overrightarrow{OM}}^{2}+2\overrightarrow{OA}•\overrightarrow{OM}}$
=$\sqrt{{2}^{2}{+x}^{2}+2•2•x•cos\frac{π}{3}}$=$\sqrt{{x}^{2}+2x+4}$=$\sqrt{{(x+1)}^{2}+3}$,
故当x=0时,|$\overrightarrow{OA}$$+\overrightarrow{OM}$|取得最小值为2,
故选:B.
点评 本题主要考查两个向量的数量积的运算,求向量的模,二次函数的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 8 | C. | -8 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,+∞) | C. | (0,+∞) | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②③ | B. | ①④ | C. | ①②③ | D. | ②③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com