精英家教网 > 高中数学 > 题目详情
19.已知非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为$\frac{π}{3}$,|$\overrightarrow{OA}$|=2,若点M在直线OB上,则|$\overrightarrow{OA}$$+\overrightarrow{OM}$|的最小值为(  )
A.$\sqrt{3}$B.2C.3D.4

分析 设|$\overrightarrow{OM}$|=x,x≥0,求得|$\overrightarrow{OA}$$+\overrightarrow{OM}$|=$\sqrt{{(\overrightarrow{OA}+\overrightarrow{OM})}^{2}}$=$\sqrt{{(x+1)}^{2}+3}$,再利用二次函数的性质,求得它的最小值.

解答 解:向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为$\frac{π}{3}$,|$\overrightarrow{OA}$|=2,若点M在直线OB上,设|$\overrightarrow{OM}$|=x,x≥0,
则|$\overrightarrow{OA}$$+\overrightarrow{OM}$|=$\sqrt{{(\overrightarrow{OA}+\overrightarrow{OM})}^{2}}$=$\sqrt{{\overrightarrow{OA}}^{2}{+\overrightarrow{OM}}^{2}+2\overrightarrow{OA}•\overrightarrow{OM}}$
=$\sqrt{{2}^{2}{+x}^{2}+2•2•x•cos\frac{π}{3}}$=$\sqrt{{x}^{2}+2x+4}$=$\sqrt{{(x+1)}^{2}+3}$,
故当x=0时,|$\overrightarrow{OA}$$+\overrightarrow{OM}$|取得最小值为2,
故选:B.

点评 本题主要考查两个向量的数量积的运算,求向量的模,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=($\sqrt{2}$,$\sqrt{2}$cos2(ωx+φ))(φ>0,0<φ<$\frac{π}{2}$),$\overrightarrow{b}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,函数f(x)的图象过点B(1,2),点B与其相邻的最高点的距离为4.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)计算f(1)+f(2)+…+f(2017);
(Ⅲ)设函数g(x)=f(x)-m-1,试讨论函数g(x)在区间[0,3]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在-720°到360°范围内,找出和-225°终边相同的角-585°、-225°、135°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=x+lnx-4的零点在区间(k,k+1)内,则正整数k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设Sn为等比数列{an}的前n项和,8a12-a15=0,则$\frac{{S}_{4}}{{S}_{2}}$=(  )
A.5B.8C.-8D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列有关线性回归分析的四个命题:
①线性回归直线必过样本数据的中心点($\overline{x}$,$\overline{y}$);
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数r>0时,两个变量正相关;
④如果两个变量的相关性越强,则相关性系数r就越接近于1.
其中真命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设直l1,l2分别是函数f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x>1}\end{array}\right.$图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于A,B,则△PAB的面积的取值范围是(  )
A.(0,1)B.(1,+∞)C.(0,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将5名大学生分配到A,B,C 3个乡镇去任职,每个乡镇至少一名,那么A镇分得两位大学生的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程和相关系数r,分别得到以下四个结论:
①y=2.35x-6.42,r=-0.93            ②y=-3.47x+5.65,r=-0.95
③y=5.43x+8.49,r=0.98            ④y=-4.32x-4.58,r=0.89
其中,一定不正确的结论序号是(  )
A.②③B.①④C.①②③D.②③④

查看答案和解析>>

同步练习册答案