精英家教网 > 高中数学 > 题目详情
17.已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=anb1+an-1b2+…+a1bn,n∈N*,是否存在实数p,q,r,对于任意n∈N*,都有Tn=pan+qbn+r,若存在求出p,q,r的值,若不存在说明理由.

分析 (1)设出首项和公差,根据等差、等比数列的通项公式和等差数列的前n项和公式,列出方程组求出首项和公差,即可求出an、bn
(2)假设存在实数p、q、r满足条件,由(1)表示出Tn,利用错位相减法求出Tn的表达式化简后即可求出实数p、q、r的值.

解答 解:(1)设等差数列的公差为d,等比数列的公比为q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由a4+b4=27,S4-b4=10得,$\left\{\begin{array}{l}{2+3d+2{q}^{3}=27}\\{8+6d-2{q}^{3}=10}\end{array}\right.$,
解得d=3,q=2,
所以an=3n-1,bn=2n; (6分)
(2)假设存在实数p,q,r,对于任意n∈N*,都有Tn=pan+qbn+r,
由(1)得,Tn=anb1+an-1b2+…+a1bn
=$2{a}_{n}+{2}^{2}{a}_{n-1}+{2}^{3}{a}_{n-2}+…+{2}^{n}{a}_{1}$     ①
∴2Tn=${{2}^{2}a}_{n}+{2}^{3}{a}_{n-1}+{2}^{4}{a}_{n-2}+…+{2}^{n+1}{a}_{1}$    ②
由②-①得,
Tn=-2(3n-1)+3×(22+23+…+2n)+2n+2
=3×$\frac{4(1-{2}^{n-1})}{1-2}$+2n+2-6n+2
=10•2n-6n-10                   (12分)
∴Tn=-2(3n-1)+10×2n-12=pan+qbn+r,
可得p=-2;q=10;r=-12,
即存在p=-2;q=10;r=-12满足条件. (14分)

点评 本题考查等差、等比数列的通项公式和等差数列的前n项和公式,错位相减法求出数列的和,考查方程思想,化简、计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,角A,B,C所对的边分别是a,b,c,若B=30°,b=2,则$\frac{a}{sinA}$的值是(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100〕后画出如图所示的频率分布直方图.观察图形给出的信息,回答下列问题:
(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;
(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则φ的值为(  )
A.$\frac{π}{6}$B.$-\frac{π}{6}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.平行四边形ABCD中,对角线AC与BD相交于点O.已知$\overrightarrow{DP}$⊥$\overrightarrow{AC}$,且|$\overrightarrow{DP}$|=2,$\overrightarrow{DM}$=$\frac{1}{3}$$\overrightarrow{DO}$,$\overrightarrow{ON}$=$\frac{1}{3}$$\overrightarrow{OC}$.设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(Ⅰ)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{MN}$;
(Ⅱ)求$\overrightarrow{DP}•\overrightarrow{DB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在《爸爸去哪儿》第二季第四期中,村长给8位“萌娃”布置一项搜寻空投食物的任务.已知:
①食物投掷地点有远、近两处; 
②由于“萌娃”Grace年纪尚小,所以要么不参与该项任务,但此时另需一位“萌娃”在大本营陪同,要么参与搜寻近处投掷点的食物;
③所有参与搜寻任务的“萌娃”须被均分成两组,一组去远处,一组去近处.
则不同的搜寻方案有175种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga$\frac{2+x}{2-x}$(0<a<1)
(1)试判断函数f(x)的奇偶性
(2)解不等式f(x)≥loga3x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知0<a<1,化简$\sqrt{a+\frac{1}{a}+2}$-$\sqrt{a+\frac{1}{a}-2}$=2$\sqrt{a}$.

查看答案和解析>>

同步练习册答案