17£®ÒÑÖªµãM£¨-3£¬0£©£¬µãPÔÚyÖáÉÏ£¬µãQÔÚxÖáµÄÕý°ëÖáÉÏ£¬µãNÔÚÖ±ÏßPQÉÏ£¬ÇÒÂú×ã$\overrightarrow{MP}•\overrightarrow{PN}=0£¬\overrightarrow{PN}=\frac{1}{2}\overrightarrow{NQ}$£®
£¨¢ñ£©µ±µãPÔÚyÖáÉÏÒÆ¶¯Ê±£¬ÇóµãNµÄ¹ì¼£CµÄ·½³Ì£»
£¨¢ò£©¹ýµã$T£¨{-\frac{1}{2}£¬0}£©$×öÖ±ÏßlÓë¹ì¼£C½»ÓÚA£¬BÁ½µã£¬ÈôÔÚxÖáÉÏ´æÔÚÒ»µãE£¨x0£¬0£©£¬Ê¹µÃ¡÷AEBÊÇÒÔµãEΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬ÇóÖ±ÏßlµÄбÂÊkµÄȡֵ·¶Î§£®

·ÖÎö £¨I£©ÉèN£¨x£¬y£©£¬Çó³öPµã×ø±ê£¬¸ù¾Ý$\overrightarrow{MP}•\overrightarrow{PN}$=0Áз½³Ì»¯¼ò¼´¿É£»
£¨II£©ÁªÁ¢·½³Ì×éÏûÔª£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµºÍÏÒ³¤¹«Ê½¼ÆËã|AB|¼°ABµÄÖеãFµÄ×ø±ê£¬ÁîFµ½xÖáµÄ¾àÀëd¡Ü$\frac{1}{2}$|AB|£¬½áºÏÅбðʽ¡÷£¾0Áв»µÈʽ×é½â³ökµÄ·¶Î§£®

½â´ð ½â£º£¨I£©ÉèN£¨x£¬y£©£¬¡ß$\overrightarrow{PN}=\frac{1}{2}\overrightarrow{NQ}$£¬¡àP£¨0£¬$\frac{3y}{2}$£©£¬
¡à$\overrightarrow{MP}$=£¨3£¬$\frac{3y}{2}$£©£¬$\overrightarrow{PN}$=£¨x£¬-$\frac{y}{2}$£©£¬
¡à$\overrightarrow{MP}•\overrightarrow{PN}$=3x-$\frac{3{y}^{2}}{4}$=0£¬¼´y2=4x£®
¡àµãNµÄ¹ì¼£CµÄ·½³ÌÊÇy2=4x£®
£¨II£©Ö±ÏßlµÄ·½³ÌΪy=k£¨x+$\frac{1}{2}$£©£¨k¡Ù0£©£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=k£¨x+\frac{1}{2}£©}\\{{y}^{2}=4x}\end{array}\right.$£¬ÏûÔªµÃky2-4y+2k=0£¬
¡à¡÷=16-8k2£¾0£¬½âµÃ-$\sqrt{2}$£¼k£¼0»ò0£¼k£¼$\sqrt{2}$£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòy1+y2=$\frac{4}{k}$£¬y1y2=2£¬
¡à|AB|=$\sqrt{1+\frac{1}{{k}^{2}}}$$\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$=$\frac{\sqrt{1+{k}^{2}}\sqrt{16-8{k}^{2}}}{{k}^{2}}$£¬
ÉèABµÄÖеãΪF£¬¡ßx1+x2=$\frac{{{y}_{1}}^{2}+{{y}_{2}}^{2}}{4}$=$\frac{4}{{k}^{2}}$-1£¬¡àF£¨$\frac{2}{{k}^{2}}$-$\frac{1}{2}$£¬$\frac{2}{k}$£©£¬
¡ßxÖáÉÏ´æÔÚÒ»µãE£¨x0£¬0£©£¬Ê¹µÃ¡÷AEBÊÇÒÔµãEΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬
¡àFµ½xÖáµÄ¾àÀëd¡Ü|EF|=$\frac{1}{2}$|AB|£¬
¼´$|\frac{2}{k}|$¡Ü$\frac{1}{2}$•$\frac{\sqrt{1+{k}^{2}}\sqrt{16-8{k}^{2}}}{{k}^{2}}$£¬»¯¼òµÃk4+k2-2¡Ü0£¬½âµÃ0£¼k2¡Ü1£®
ÓÖ-$\sqrt{2}$£¼k£¼0»ò0£¼k£¼$\sqrt{2}$£®
¡àÖ±ÏßlµÄбÂÊkµÄ·¶Î§ÊÇ[-1£¬0£©¡È£¨0£¬1]£®

µãÆÀ ±¾Ì⿼²éÁ˹켣·½³ÌµÄÇó½â£¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÊýÁÐ{an}Âú×㣺an=$\left\{\begin{array}{l}{1£¬1¡Ün¡Ü2016}\\{2•£¨\frac{1}{3}£©^{n-2016}£¬n¡Ý2017}\end{array}\right.$£¬ÉèSn±íʾÊýÁÐ{an}µÄǰnÏîºÍ£®ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\lim_{n¡ú¡Þ}{a_n}$ºÍ$\lim_{n¡ú¡Þ}{S_n}$¶¼´æÔÚB£®$\lim_{n¡ú¡Þ}{a_n}$ºÍ$\lim_{n¡ú¡Þ}{S_n}$¶¼²»´æÔÚ
C£®$\lim_{n¡ú¡Þ}{a_n}$´æÔÚ£¬$\lim_{n¡ú¡Þ}{S_n}$²»´æÔÚD£®$\lim_{n¡ú¡Þ}{a_n}$²»´æÔÚ£¬$\lim_{n¡ú¡Þ}{S_n}$´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑ֪˫ÇúÏßC1£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©£¬ÓëË«ÇúÏßC2£º$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ÏཻÓÚA¡¢B¡¢C¡¢DËĵ㣬ÈôË«ÇúÏßC1µÄÒ»¸ö½¹µãΪF£¨-$\sqrt{2}$£¬0£©£¬ÇÒËıßÐÎABCDµÄÃæ»ýΪ$\frac{16}{3}$£¬ÔòË«ÇúÏßC1µÄÀëÐÄÂÊΪ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Å×ÖÀÁ½Ã¶ÖʵؾùÔȵÄÕýËÄÃæÌå÷»×Ó£¬Æä4¸öÃæ·Ö±ð±êÓÐÊý×Ö1£¬2£¬3£¬4£¬¼Çÿ´ÎÅ×ÖÀ³¯ÏÂÒ»ÃæµÄÊý×ÖÖнϴóÕßΪa£¨ÈôÁ½ÊýÏàµÈ£¬ÔòÈ¡¸ÃÊý£©£¬Æ½¾ùÊýΪb£¬Ôòʼþ¡°a-b=1¡±·¢ÉúµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{4}$C£®$\frac{1}{6}$D£®$\frac{3}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªt¡ÊR£¬Èô¸´Êý$z=\frac{1-ti}{1+i}$£¨iΪÐéÊýµ¥Î»£©Îª´¿ÐéÊý£¬Ôò$|{\sqrt{3}+ti}|$=£¨¡¡¡¡£©
A£®2B£®4C£®6D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©Âú×ãf£¨x£©=f£¨-x£©£¬ÇÒµ±x¡Ê£¨-¡Þ£¬0£©Ê±£¬f£¨x£©+xf'£¨x£©£¼0³ÉÁ¢£¬Èôa=£¨20.6£©•f£¨20.6£©£¬b=£¨ln2£©•f£¨ln2£©£¬c=£¨${{{log}_2}\frac{1}{8}}$£©•f£¨${{{log}_2}\frac{1}{8}}$£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®a£¾b£¾cB£®c£¾b£¾aC£®a£¾c£¾bD£®c£¾a£¾b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ËÄÀâ×¶S-ABCDÖУ¬µ×ÃæABCDΪֱ½ÇÌÝÐΣ¬AB¡ÎCD£¬BC¡ÍCD£¬Æ½ÃæSCD¡ÍÆ½ÃæABCD£¬SC=CD=SD=AD=2AB=2£¬M£¬N·Ö±ðΪSA£¬SBµÄÖе㣬EΪCDµÄÖе㣬¹ýM£¬N×÷Æ½ÃæMNPQ·Ö±ðÓë½»BC£¬ADÓÚµãP£¬Q£®
£¨¢ñ£©µ±QΪADÖеãʱ£¬ÇóÖ¤£ºÆ½ÃæSAE¡ÍÆ½ÃæMNPQ£»
£¨¢ò£©µ±$\overrightarrow{AQ}=3\overrightarrow{QD}$ʱ£¬ÇóÈýÀâ×¶Q-BCNµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬Ð±ÈýÀâÖùABC-A1B1C1ÖУ¬²àÃæAA1B1BΪÁâÐΣ¬µ×Ãæ¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏBAC=90¡ã£¬A1B¡ÍB1C£®
£¨1£©ÇóÖ¤£ºÖ±ÏßAC¡ÍÖ±ÏßBB1£»
£¨2£©ÈôÖ±ÏßBB1Óëµ×ÃæABC³ÉµÄ½ÇΪ60¡ã£¬Çó¶þÃæ½ÇA-BB1-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x-2}{x+2}$ex£¬g£¨x£©=2lnx-ax£¨a¡ÊR£©
£¨1£©ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£» 
£¨2£©Ö¤Ã÷£ºµ±b¡Ê[0£¬1£©Ê±£®º¯Êýh£¨x£©=$\frac{{e}^{x}-bx-b}{{x}^{2}}$£¨x£¾0£©ÓÐ×îСֵ£¬¼Çh£¨x£©µÄ×îСֵΪ¦Õ£¨b£©£¬Çó¦Õ£¨b£©µÄÖµÓò£» 
£¨3£©Èôg£¨x£©´æÔÚÁ½¸ö²»Í¬µÄÁãµãx1£¬x2£¨x1£¼x2£©£¬ÇóaµÄȡֵ·¶Î§£¬²¢±È½Ïg¡ä£¨$\frac{{x}_{1}+2{x}_{2}}{3}$£©Óë0µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸