精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=|x-4|-|x-1|.
(Ⅰ)求不等式f(x)≤1的解集;
(Ⅱ)若{x|f(x)≥t2-2t}∩{x|0≤x≤2}≠∅,求实数t的取值范围.

分析 (Ⅰ)根据绝对值的几何意义求出不等式的解集即可;(Ⅱ)问题转化为f(x)max≥t2-2t在[0,2]成立,求出f(x)的最大值,解出t即可.

解答 解:(Ⅰ)由|x-4|-|x-1|的几何意义知:
f(x)表示点P(x,0)到点A(4,0)和点B(1,0)的距离之差,
故{x|x≥2};
(Ⅱ)使{x|f(x)≥t2-2t}∩{x|0≤x≤2}≠∅成立,
知存在x0∈[0,2]使得f(x0)≥t2-2t成立,
即f(x)max≥t2-2t在[0,2]成立,
f(x)在[0,2]上的最大值是3,
∴t2-2t≤3,解得:-1≤t≤3.

点评 本题考查了绝对值的意义,考查解绝对值不等式问题,是一道中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设AB是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的长轴,若把AB给100等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是101a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.变量x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$,则目标函数z=x+3y的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知实数a,b满足|a|<2,|b|<2,证明:2|a+b|<|4+ab|;
(2)已知a>0,求证:$\sqrt{{a^2}+\frac{1}{a^2}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.董师傅用铁皮制作一封闭的工件,且三视图如图所示(单位:cm),图中水平线与竖直线垂直),则制作该工件用去的铁皮的面积为(制作过程铁皮的损耗忽略不计)(100(3+$\sqrt{5}$)cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某沿海城市的海边有两条相互垂直的直线型公路l1、l2,海岸边界MPN近似地看成一条曲线段.为开发旅游资源,需修建一条连接两条公路的直线型观光大道AB,且直线AB与曲线MPN有且仅有一个公共点P(即直线与曲线相切),如图所示.若曲线段MPN是函数$y=\frac{a}{x}$图象的一段,点M到l1、l2的距离分别为8千米和1千米,点N到l2的距离为10千米,点P到l2的距离为2千米.以l1、l2分别为x、y轴建立如图所示的平面直角坐标系xOy.
(1)求曲线段MPN的函数关系式,并指出其定义域;
(2)求直线AB的方程,并求出公路AB的长度(结果精确到1米).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x-c|.
(Ⅰ)求证:$f(x)+f(-\frac{1}{x})≥2$;
(Ⅱ)若c>2,不等式$|{f({\frac{1}{2}x+c})-\frac{1}{2}f(x)}|≤1$的解集为{x|1≤x≤3},求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,过点F1且垂直于x轴的直线被椭圆截得的弦长为$\sqrt{2}$,
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,2)是否存在直线l与椭圆交于不同的A,B两点.使OA⊥OB(O为坐标原点).若存在求直线方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.阅读如图所示的程序框图,运行相应的程序,若判断框内是n≤6,则输出的S为(  )
A.$\frac{3}{4}$B.$\frac{25}{24}$C.$\frac{11}{12}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案