分析 (Ⅰ)根据绝对值的性证明即可;(Ⅱ)求出g(x)的分段函数的形式,得到关于c的方程组,解出即可.
解答 (Ⅰ)证明:$f(x)+f(-\frac{1}{x})=|{x-c}|+|{-\frac{1}{x}-c}|=|{x-c}|+|{\frac{1}{x}+c}|$$≥|{(x-c)+(\frac{1}{x}+c)}|=|{x+\frac{1}{x}}|=|x|+\frac{1}{|x|}≥2\sqrt{|x|+\frac{1}{|x|}}=2$;
(Ⅱ)解:$g(x)=f(\frac{1}{2}x+c)-\frac{1}{2}f(x)=|{\frac{1}{2}x+c-c}|-\frac{1}{2}|{x-c}|=\frac{1}{2}|x|-\frac{1}{2}|{x-c}|$,
则$g(x)=\left\{\begin{array}{l}-\frac{c}{2},x≤0\\ x-\frac{c}{2},0<x<c\\ \frac{c}{2},x≥c\end{array}\right.$,
由|g(x)|≤1时,又c>2,所以$|{x-\frac{c}{2}}|≤1$,
即$-1≤x-\frac{1}{2}≤1$,所以$\left\{\begin{array}{l}1+\frac{c}{2}=3\\-1+\frac{c}{2}=1\end{array}\right.$,
所以c=4.
点评 本题考查了绝对值不等式问题,考查分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 轮次 | 一 | 二 | 三 | 四 | 五 | 六 |
| 甲 | 73 | 66 | 82 | 72 | 63 | 76 |
| 乙 | 83 | 75 | 62 | 69 | 75 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com