精英家教网 > 高中数学 > 题目详情
15.如图,在四棱锥E-ABCD中,四边形ABCD为平行四边形,△BCE是等边三角形,AE⊥BE,M为CE上一点,且BM⊥平面ACE.
(Ⅰ)求证:AE⊥BC;
(Ⅱ)若AE=$\sqrt{3}$,BE=1,求三棱锥C-ABE的体积.

分析 (I)由BM⊥平面ACE得BM⊥AE,结合AE⊥BE得出AE⊥平面BCE,故而AE⊥BC;
(II)VC-ABE=VA-BCE=$\frac{1}{3}{S}_{△BCE}•AE$.

解答 证明:(Ⅰ)∵BM⊥平面ACE,AE?平面ACE,
∴BM⊥AE,又AE⊥BE,BM∩BE=B,BM、BE?平面BCE,
∴AE⊥平面BCE,又BC?平面BCE,
∴AE⊥BC.
(Ⅱ)因为△BCE是等边三角形,BE=1,
∴S△BCE=$\frac{\sqrt{3}}{4}×{1}^{2}$=$\frac{\sqrt{3}}{4}$.
由(Ⅰ)可知,AE⊥平面BCE,
∴${V_{C-ABE}}={V_{A-BCE}}=\frac{1}{3}×\frac{{\sqrt{3}}}{4}×\sqrt{3}=\frac{1}{4}$.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=2x2+2-x+2的图象经过点(1,a),求a的值等于(  )
A.$\frac{9}{2}$B.$\frac{21}{2}$C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列5,9,17,33,x,…中的x等于(  )
A.47B.65C.63D.128

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线y1=ax2+bx+c(a>0)与x轴相交于点A,B(点A,B在原点O的两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为6,当y1随着x的增大而减小时,求自变量x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)计算2cos$\frac{π}{2}$-tan$\frac{π}{4}$+$\frac{3}{4}$tan2$\frac{π}{6}$-sin$\frac{π}{6}$+cos2$\frac{π}{6}$+sin$\frac{3π}{2}$;
(2)已知sinx=-$\frac{1}{3}$,求cosx,tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3+2xf'(0),则f'(0)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=$\frac{{e}^{x}}{{x}^{2}}$-$\frac{m}{x}$(其中m为实数,e是自然对数的底数)
(1)若f(x)在x=2处取得极值,求f(x)在x=1处的切线方程;
(2)若x∈(0,+∞)时方程f(x)=0有实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.根据下列表格中的数据,可以断定方程ex-x-2=0的一个根所在的区间是(1,2).
x-10123
ex0.3712.727.3920.09
x+212345

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设$\overrightarrow{a}$、$\overrightarrow{b}$是两个非零向量,则下列选项正确的是(  )
A.若|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$B.若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|
C.若|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$共线D.若$\overrightarrow{a}$,$\overrightarrow{b}$平行,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,

查看答案和解析>>

同步练习册答案