分析 (I)由BM⊥平面ACE得BM⊥AE,结合AE⊥BE得出AE⊥平面BCE,故而AE⊥BC;
(II)VC-ABE=VA-BCE=$\frac{1}{3}{S}_{△BCE}•AE$.
解答 证明:(Ⅰ)∵BM⊥平面ACE,AE?平面ACE,
∴BM⊥AE,又AE⊥BE,BM∩BE=B,BM、BE?平面BCE,
∴AE⊥平面BCE,又BC?平面BCE,
∴AE⊥BC.
(Ⅱ)因为△BCE是等边三角形,BE=1,
∴S△BCE=$\frac{\sqrt{3}}{4}×{1}^{2}$=$\frac{\sqrt{3}}{4}$.
由(Ⅰ)可知,AE⊥平面BCE,
∴${V_{C-ABE}}={V_{A-BCE}}=\frac{1}{3}×\frac{{\sqrt{3}}}{4}×\sqrt{3}=\frac{1}{4}$.
点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | $\frac{21}{2}$ | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | -1 | 0 | 1 | 2 | 3 |
| ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
| x+2 | 1 | 2 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$ | B. | 若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$| | ||
| C. | 若|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$共线 | D. | 若$\overrightarrow{a}$,$\overrightarrow{b}$平行,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|, |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com