精英家教网 > 高中数学 > 题目详情
已知实数满足x2+y2=4,那么3y-4x的最大值为(  )
A、10
B、8
C、6
D、
10
考点:直线与圆的位置关系
专题:三角函数的图像与性质
分析:可设出圆x2+y2=4参数方程,转化为三角函数,利用三角函数的有界性求最值.
解答: 解:圆x2+y2=4参数方程是
x=2cosθ
y=2sinθ
,θ∈R
则3y-4x=6sinθ-8cosθ=10sin(θ+∅)
∵θ∈R
∴-10≤10sin(θ+∅)≤10
∴-10≤3y-4x≤10
∴3y-4x的最大值为10
故选:A
点评:此类题常用圆的标准方程将求最值的问题转化到三角函数中用三角函数的有界性求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设0<x1<x2
π
2

(Ⅰ)证明:x1>sinx1
(Ⅱ)x1sinx2cosx1>x2sinx1cosx2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:α∩β=AB,PC⊥α,PD⊥β,C、D是垂足,试判断直线AB与CD的位置关系?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x2+y2-x+y-m=0,表示一个圆的方程,则m的取值范围是(  )
A、m>-
1
2
B、m≥-
1
2
C、m<-
1
2
D、m>-2

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|2x-3|≥7的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
均为单位向量,它们的夹角为60°,那么|
a
+2
b
|
等于(  )
A、
7
B、
10
C、
13
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

x-y≤0
x+y≥0
y≤a
,z=x+2y的最大值是3,则a的值是(  )
A、1B、-1C、0D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为
3
,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点M,N在OB上,设矩形PNMQ的面积为y.
(1)设∠POB=θ,求y表示成θ的函数;
(2)请根据你在(1)中写出的函数解析式,求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinα,1),
b
=(cosα,2),α∈(0,
π
2

(Ⅰ)若
a
b
,求tanα的值;
(Ⅱ)在( I)的条件下,若cos(α+β)=
5
13
,β∈(0,
π
2
),求sinβ的值.

查看答案和解析>>

同步练习册答案