精英家教网 > 高中数学 > 题目详情
7.下列求导运算正确的是(  )
A.$({log_2}x)'=\frac{1}{xln2}$B.$(x+\frac{1}{x})'=1+\frac{1}{x^2}$C.(3x)'=3xlog3eD.(x2cosx)'=-2xsinx

分析 根据题意,依次计算选项中函数的导数,分析可得答案.

解答 解:根据题意,依次分析选项:
对于A、$({log_2}x)'=\frac{1}{xln2}$,正确;
对于B、$(x+\frac{1}{x})'=1-\frac{1}{x^2}$,错误;
对于C、(3x)'=3xloge3,错误;
对于D、(x2cosx)'=2xcosx-x2sinx,错误;
故选:A.

点评 本题考查导数的计算,关键是掌握导数的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.天气预报说,在今后的三天中,每一天下雨的概率均为50%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用0,1,2,3,4表示下雨,用5,6,7,8,9表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907    966    191    925    271    932    812    458    569    683
431    257    393    027    556    488    730    113    537    989
据此估计,这三天中恰有两天下雨的概率近似为(  )
A.0.30B.0.35C.0.40D.0.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx,g(x)=f(x)+ax2-3x,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.
(1)求a的值;
(2)求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)(1-i)(1+i)2-($\frac{2}{5}$-$\frac{1}{5}$i)+$\frac{1+2i}{1-2i}$-4i;
(2)$\frac{(-1+\sqrt{3}i)^{3}}{(1+i)^{6}}$-$\frac{(2+i)^{2}}{4-3i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=$\sqrt{2}$,|$\overrightarrow b$|=2,且($\overrightarrow a$-$\overrightarrow b$)⊥$\overrightarrow a$,则|$\overrightarrow a$+$\overrightarrow b$|等于(  )
A.3B.$2\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{5}{4}$.
(1)求f(x)的最小正周期及单调增区间;
(2)求f(x)的图象的对称轴方程和对称中心;
(3)求f(x)的最小值及取得最小值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.奇函数f(x)定义域为(-π,0)∪(0,π),其导函数为f′(x).当0<x<π时,有f′(x)sinx-f(x)cosx<0,则关于x的不等式f(x)<$\sqrt{2}$f($\frac{π}{4}$)sinx的解集是$(-\frac{π}{4},0)∪(\frac{π}{4},π)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=x2+2x+1.求y=f(x)的图象与两坐标所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某班共有学生53人,学号分别为1~53号,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号的同学在样本中,那么样本中还有一个同学的学号是(  )
A.16B.10C.53D.32

查看答案和解析>>

同步练习册答案