精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A,B,C的对边分别是a,b,c,若C=45°,c=$\sqrt{2}$a,则A等于(  )
A.120°B.60°C.150°D.30°

分析 由已知及正弦定理可得sinA=$\frac{1}{2}$,结合大边对大角可得A为锐角,即可得解A的值.

解答 解:∵C=45°,c=$\sqrt{2}$a,
∴由正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$,可得:$\frac{a}{sinA}=\frac{\sqrt{2}a}{sin45°}$,
∴解得:sinA=$\frac{1}{2}$,
又∵c>a,A为锐角,
∴A=30°.
故选:D.

点评 本题主要考查了正弦定理,大边对大角在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|x-2|+|x-a|.
(Ⅰ)若a=-2,解不等式f(x)≥5;
(Ⅱ)如果当x∈R时,f(x)≥3-a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知半径为1的球O内切于正四面体A-BCD,线段MN是球O的一条动直径(M.N是直径的两端点),点P是正四面体A-BCD的表面上的一个动点,则|${\overrightarrow{PM}$+$\overrightarrow{PN}}$|的取值范围是[2,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在函数y=2x,y=x2,y=2x,y=cosx中,偶函数的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.正方体ABCD-A1B1C1D1被平面B1D1C截去一部分后得到几何体AB1D1-ABCD.如图所示.
(1)在几何体AB1D1-ABCD的面上画出一条线段,使该线段所在的直线平行于平面B1D1C.
(2)设E为B1D1的中点,求证:B1D1⊥平面A1ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.
(Ⅰ)求函数f(x)的解析式及单调增区间;
(Ⅱ)证明:对于区间[-1,1]上任意两个自变量x1,x2,都有|f(x1)-f(x2)|≤4成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=cos$({\frac{47π}{10}-x})$,则函数f(x)的图象的一条对称轴为(  )
A.$x=\frac{π}{2}$B.$x=-\frac{3π}{10}$C.$x=-\frac{7π}{10}$D.$x=\frac{2π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=x2-x3的单调增区间为(  )
A.(0,+∞)B.(0,$\frac{2}{3}$)C.($\frac{1}{2}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线$\sqrt{3}$x-y+1=0的倾斜角的大小是(  )
A.45°B.60°C.120°D.135°

查看答案和解析>>

同步练习册答案