精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+x2-xlna,a>1.
(1)求证:函数f(x)在(0,+∞)上单调递增;
(2)对?x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范围.
分析:(1)先求函数的导数,利用条件判断函数导数的符号,进而判断函数的单调性.
(2)求出函数f(x)在区间[-1,1]上的最大值和最小值,然后利用不等式恒成立的条件进行求参数a的取值范围.
解答:解:(1)f′(x)=axlna+2x-lna=2x+(ax-1)lna. …(2分)
由于a>1,故当x∈(0,+∞)时,lna>0,ax-1>0,所以f′(x)>0,…(5分)
故函数f(x)在(0,+∞)上单调递增.…(6分)
(2)由(1)可知,当x∈(-∞,0)时,f′(x)<0,
故函数f(x)在(-∞,0)上单调递减.…(7分)
所以,f(x)在区间[-1,0]上单调递减,在区间[0,1]上单调递增.
所以fmin=f(0)=1,fmax=max{f(-1),f(1)}.…(9分)
f(-1)=
1
a
+1+lna,f(1)=a+1-lna,
f(1)-f(-1)=a-
1
a
-2lna,
记g(x)=x-
1
x
-2lnx,则g′(x)=1+
1
x2
-
2
x
=(
1
x
-1)2
,(当x=1时取到等号),所以g(x)=x-
1
x
-2lnx递增,
故f(1)-f(-1)=a-
1
a
-2lna>0    …(11分)
所以f(1)>f(-1),于是fmax=f(1)=a+1-lna.(12分)
故对?x1,x2∈[-1,1],|f(x1)-f(x2)|max=|f(1)-f(0)|=a-lna,所以a-lna≤e-1,所以1<a≤e.…(14分)
点评:本题考查导数在研究函数中的两个应用:研究函数的单调性以及求函数的最大值和最小值.要使不等式恒成立,只要e-1大于等于最大值与最小值之差即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案