精英家教网 > 高中数学 > 题目详情
13.在三棱锥P-ABC中,PB2=PC2+BC2,PA⊥平面ABC.
(1)求证:AC⊥BC;
(2)如果AB=4,AC=3,当PA取何值时,使得异面直线PB与AC所成的角为60°.

分析 (1)由已知得PC⊥BC,PA⊥BC,由此能证明AC⊥BC.
(2)推导出PA⊥AC,设PA=x,由向量运算法则能求出当PA=$2\sqrt{5}$时,异面直线PB与AC所成的角为600

解答 (本题12分)
证明:(1)∵PB2=PC2+BC2,∴PC⊥BC,
∵PA⊥平面ABC,∴PA⊥BC,
∴$\overrightarrow{AC}•\overrightarrow{BC}=(\overrightarrow{AP}+\overrightarrow{PC})•\overrightarrow{BC}=\overrightarrow{AP}•\overrightarrow{BC}+\overrightarrow{PC}•\overrightarrow{BC}=0+0=0$,
∴AC⊥BC;…(6分)
解:(2)∵PA⊥平面ABC,PA⊥AC,$\overrightarrow{PA}•\overrightarrow{AC}=0$,
设PA=x,又异面直线PB与AC所成的角为600
则$|{\overrightarrow{PB}•\overrightarrow{AC}}|=|{\overrightarrow{PB}}|×|{\overrightarrow{AC}}|cos\frac{π}{3}$.
而$|{\overrightarrow{PB}•\overrightarrow{AC}}|=|{(\overrightarrow{PA}+\overrightarrow{AB})•\overrightarrow{AC}}|=|{\overrightarrow{PA}•\overrightarrow{AC}+\overrightarrow{AB}•\overrightarrow{AC}}|=|{\overrightarrow{AB}•\overrightarrow{AC}}|$
∴$|{\overrightarrow{AB}•\overrightarrow{AC}}|$=$|{\overrightarrow{PB}}|×|{\overrightarrow{AC}}|cos\frac{π}{3}$,$|{\overrightarrow{AB}•\overrightarrow{AC}}|$=$4×3×\frac{3}{4}=9$.
∴$9=\sqrt{16+{x^2}}×3cos\frac{π}{3}$,$x=2\sqrt{5}$.
当PA=$2\sqrt{5}$时,异面直线PB与AC所成的角为600.…(12分)

点评 本题考查异面直线垂直的证明,考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.4个学生与2个老师站成前后两排,每排三人,老师不站同一排的站法有432.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆5x2+9y2=45,椭圆的右焦点为F,
(1)求过点F且斜率为1的直线被椭圆截得的弦长.
(2)求以M(1,1)为中点的椭圆的弦所在的直线方程.
(3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦AB的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题正确的是(  )
A.若直线l不平行于平面α,则α内不存在直线平行于直线l
B.若直线l不垂直于平面α,则α内不存在直线垂直于直线l
C.若平面α不平行于平面β,则β内不存在直线平行于平面α
D.若平面α不垂直于平面β,则β内不存在直线垂直于平面α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两直线l1:x+my+4=0,l2:(m-1)x+3my+2m=0.若l1∥l2,则m的值为(  )
A.4B.0或4C.-1或$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求值:$\frac{{tan150°cos({-210°})sin({-420°})}}{{sin1050°cos({-600°})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{x^2}{m+1}+\frac{y^2}{m}={1^{\;}}({m∈R})$的焦点坐标为(  )
A.(±1,0)B.$({±\sqrt{2m+1},0})$C.(0,±1)D.$({0,±\sqrt{2m+1}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow a=(3,4),\overrightarrow{|b}$|=3.
(1)设$\overrightarrow e$为单位向量,且$\overrightarrow e∥\overrightarrow a$,求$\overrightarrow e$的坐标;
(2)若$\overrightarrow a$与$\overrightarrow b$的夹角为60°,$\overrightarrow a+λ\overrightarrow b$与$\overrightarrow a+\overrightarrow b$的夹角为锐角,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,且椭圆C上一点与两个焦点构成的三角形的周长为2$\sqrt{2}$+2
(1)求椭圆C的方程;
(2)设过椭圆C的右焦点F的直线l与椭圆C交于A,B两点,试问:在x轴上是否存在定点M,使$\overrightarrow{MA}•\overrightarrow{MB}=-\frac{7}{16}$成立?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案