分析 先分别求出P(A)、P(B)、P(AB),由此利用P(A∪B)=P(A)+P(B)-P(AB),能求出结果.
解答 解:∵抛掷一均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),
事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过3”,
∴P(A)=$\frac{3}{6}$=$\frac{1}{2}$,P(B)=$\frac{3}{6}=\frac{1}{2}$,P(AB)=$\frac{2}{6}=\frac{1}{3}$,
∴P(A∪B)=P(A)+P(B)-P(AB)=$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=\frac{2}{3}$.
故答案为:$\frac{2}{3}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意任意事件概率加法公式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{2}-\sqrt{6}}}{4}$ | C. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ | D. | $-\frac{{\sqrt{6}+\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin($\frac{x}{2}$-$\frac{π}{8}$) | B. | y=sin($\frac{x}{2}$+$\frac{π}{8}$) | C. | y=sin(2x-$\frac{π}{8}$) | D. | y=sin(2x-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com