精英家教网 > 高中数学 > 题目详情
10.把y=sinx的图象向右平移$\frac{π}{8}$后,再把各点横坐标伸长到原来的2倍,得到的函数的解析式为(  )
A.y=sin($\frac{x}{2}$-$\frac{π}{8}$)B.y=sin($\frac{x}{2}$+$\frac{π}{8}$)C.y=sin(2x-$\frac{π}{8}$)D.y=sin(2x-$\frac{π}{4}$)

分析 令f(x)=sinx,可求y=f(x-$\frac{π}{8}$)的解析式,利用函数y=Asin(ωx+φ)的图象变换即可求得答案.

解答 解:令f(x)=sinx,
则y=f(x-$\frac{π}{8}$)=sin(x-$\frac{π}{8}$),再将所得的图象上各点的横坐标变为原来的2倍,
得:y=sin($\frac{1}{2}$x-$\frac{π}{8}$).
故选:A.

点评 本题考查函数y=Asin(ωx+φ)的图象变换,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.复数z=$\frac{i+2}{i}$对应的点在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛掷一均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过3”,则P(A∪B)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在($\frac{2}{x}$+$\sqrt{x}$)n的展开式中,各项系数之和为M,各二项式系数之和为N,且8M=27N,则展开式中的常数项为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设x、y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{4x-y-4≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为6,则${log}_{\sqrt{3}}(\frac{1}{a}+\frac{2}{b})$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,已知$\overrightarrow{a}$=(-1,$\sqrt{2}$),|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$2\sqrt{3}$B.$2\sqrt{6}$C.$4\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx-x2+ax.
(1)若函数f(x)在(0,e]上单调递增,试求a的取值范围;
(2)设函数f(x)在点C(1,f(1))处的切线为l,证明:函数f(x)图象上的点都不在直线l的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.f(x)=$\frac{1}{\sqrt{-lo{g}_{2}x}}$的定义域为{x|0<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,AB⊥AC,AD⊥BC于D,则$\frac{1}{A{D}^{2}}$=$\frac{1}{A{B}^{2}}$+$\frac{1}{A{C}^{2}}$,类比上述结论,在四面体ABCD中,若AB,AC,AD两两垂直,AE⊥平面BCD,则$\frac{1}{A{E}^{2}}$=$\frac{1}{A{D}^{2}}$+$\frac{1}{A{B}^{2}}$+$\frac{1}{A{C}^{2}}$.

查看答案和解析>>

同步练习册答案