【题目】已知
是由正整数组成的无穷数列,对任意
,
满足如下两个条件:①
是
的倍数;②
.
(1)若
,
,写出满足条件的所有
的值;
(2)求证:当
时,
;
(3)求
所有可能取值中的最大值.
科目:高中数学 来源: 题型:
【题目】如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.
![]()
(Ⅰ)求这两个班学生成绩的中位数及x的值;
(Ⅱ)如果将这些成绩分为“优秀”(得分在175分 以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知sin(-π+θ)+2cos(3π-θ)=0,则
;
(2)已知
.
①化简f(α);
②若f(α)
,且
,求cos α-sin α的值;
③若![]()
,求f(α)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
的侧面
是平行四边形,
,平面
平面
,且
分别是
的中点.
(1)求证:
平面
;
(2)当侧面
是正方形,且
时,
(ⅰ)求二面角
的大小;
(ⅱ)在线段
上是否存在点
,使得
?若存在,指出点
的位置;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
,数列
满足条件:对于
,
,且
,并有关系式:
,又设数列
满足
(
且
,
).
(1)求证数列
为等比数列,并求数列
的通项公式;
(2)试问数列
是否为等差数列,如果是,请写出公差,如果不是,说明理由;
(3)若
,记
,
,设数列
的前
项和为
,数列
的前
项和为
,若对任意的
,不等式
恒成立,试求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射手每次射击击中目标的概率是
,且各次射击的结果互不影响,假设这名射手射击3次.
(1)求恰有2次击中目标的概率;
(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记
为射手射击3次后的总得分,求
的概率分布列与数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com